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A Letter to the Reader
Dear Reader,

Thank you for opening this guide. It aspires to be a quiet companion on your
learning journey. Physics may seem like a towering mountain from afar, but
up close, it resembles a garden.

May this book encourage you to pause and admire the flowers by the roadside,
to look up at the starry sky and moonlight.
D1 is like each new encounter; D2 invites you to take one more step: perform
a small derivation, use an approximation, or see the same landscape with
greater clarity. Don’t fear D2—view it as an invitation to pause, ask “Why?”,
and then lift your gaze to take in the scenery.

If you get stuck, try these three things: sketch another diagram; study a
simpler boundary case first; change only one variable at a time. Most
confusions will eventually clear.
May this guide reward your Curiosity, Creativity, and Caution. And may the
world hold just a little more wonder. Wishing you smooth learning and
steady progress.

Ray Zhou
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Reading Instructions
• Purpose: This guidebook is a study guide to Physics Bowl D1/D2. Use it to go over

key concepts and trends, then practice.

• Structure: Material is divided into parts (Mechanics, Dynamics, Waves/EM, Optics).
Inside each part, boxes contain formulas, heuristics, and solutions.

• Practice pointers: The list items are metadata only (Contest/Year/Division/Prob-
lem/Page). Problem statements are in official sources.

• Navigation: There are hyperlinks provided throughout the PDF to facilitate faster
jumps.

Difficulty Legend
• D1: Baseline knowledge and methods; no calculus derivations; aimed for D1 questions.

• D2: More substantial topics and brief derivations (calculus/ODE/approximations);
aimed for D2 or when principles are required.

• D1 chapters may list some approximation results for memorization purposes alone;
derivations will be at D2.

Notation & Conventions
• Units: SI as default. Gravitation on Earth: g = 9.8 m/s2 unless otherwise stated.

Always m/s2 (or m s−2). Angles: radians except when a symbol for degrees is shown.

• Vectors: Vectors are denoted by arrows (e.g., v⃗); magnitudes v = ∥v⃗∥. Use components
vx, vy with ı̂, ȷ̂.

• emf vs field: Use E for emf (scalar); E⃗ for electric field (vector). When magnitude is
intended, write |E⃗|. Example (Faraday–Lenz): E =

∮
∂S E⃗ · d⃗l (emf) is to be distinguished

from the field E⃗.

• Common symbols: Circuits use V (voltage), I (current), R (resistance), C (capaci-
tance). Induced emf uses E (not E). Electric field is E⃗. Waves use v (speed in medium),
f (frequency), λ (wavelength).

• Overloaded symbols: P for pressure (fluids) or power (circuits) depending on context.
Thermodynamics: ∆U = Q + W (convention: W > 0 means work done on the system).

• Sign conventions: Choose axes first and maintain consistency. For Doppler in a
stationary medium, prefer the rule ”approach increases frequency; recession decreases”
and employ a sign diagram; see the Waves unit for the formula being given in detail.
For KVL, direction of tracing loop; voltage rises are positive.
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Disclaimer

This ”Physics Bowl D1 + D2 Cheat Sheets” (Version 1.7 by Ray Zhou) is an independent,
non-official study guide created for educational purposes only. It summarizes key concepts,
formulas, heuristics, and original solutions based on standard physics principles and publicly
available Physics Bowl metadata (e.g., Contest/Year/Division/Problem/Page).

Full problem statements are sourced from official AAPT materials—please visit the Ameri-
can Association of Physics Teachers (AAPT) website at aapt.org/programs/physicsbowl
for complete exams and answers.

This guide is provided ”as is” without warranties of accuracy or completeness. It is not
endorsed by AAPT and should not be used as a substitute for official resources. Users
should verify information independently. Distributed under CC BY-NC-SA 4.0 license for
non-commercial, educational sharing.

For feedback or questions, contact zhouxinrui2025@163.com, or visit the project on GitHub:
https://qiuxue-yee.github.io/Physics-Bowl-CheatSheets-prepmaterial/.
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Part I: Mechanics

1 Unit 1: Kinematics
Coverage checklist: Vectors vs scalars; constant-acceleration (SUVAT); projectile motion (same-
level range/time/height); uniform circular motion (ac = v2/r, T = 2πr/v); relative motion;
calculus forms v = dx/dt, a = dv/dt D2; areas under v–t and a–t graphs D2

1.1 Vectors & Components D1

Formulas & Concepts

Concept explanation: Vectors have both magnitude and direction. The decom-
position of a vector into orthogonal components translates geometric relations into
algebraic relations such that calculations are simple component arithmetic.
Core formulas:v⃗ = (vx, vy) (2D), v = ∥v⃗∥ =

√
v2

x + v2
y,

Unit vectors: ı̂ = (1, 0), ȷ̂ = (0, 1), v⃗ = vxı̂ + vy ȷ̂.

Variable definitions: vx, vy scalar components; v speed (magnitude of velocity);
ı̂, ȷ̂ orthonormal basis.
Prerequisites & scope: Axes must be orthogonal for Pythagorean magnitude;
extend to 3D with k̂ and v =

√
v2

x + v2
y + v2

z .

Heuristics & Pitfalls

• Align axes with directions of steepest slopes and launch angles to reduce compo-
nents.

• Separate vectors before writing equations (Newton’s laws, kinematics) to prevent
late trigonometry.

• Mixing magnitude and component equations. Solution: write separate equations
for x and y and add if applicable.
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Problem #1. Resolve velocity vector v⃗ = (30 m/s, 40 m/s) into magnitude and direction.

Solution

v =
√

302 + 402 = 50 m/s. Direction θ = arctan(40/30) ≈ 53.1◦ above the horizontal.

Problem #2. A force of 100 N acts at 30◦ to the horizontal. Find its horizontal and
vertical components.

Solution

Fx = 100 cos 30◦ = 50
√

3 N, Fy = 100 sin 30◦ = 50 N.

1.2 Constant Acceleration (SUVAT) D1

Formulas & Concepts

Concept explanation: Position and velocity are quadratic/linear in time with
constant acceleration, providing closed-form relations (SUVAT equations).
Core formulas: 

x = x0 + v0t + 1
2at2,

v = v0 + at,

v2 = v2
0 + 2a (x − x0).

Variable definitions: x position; v velocity; a constant acceleration; subscript 0
initial value; t time; ∆x = x − x0.
Prerequisites & scope: Acceleration must be constant over the interval; otherwise
use calculus forms.

Heuristics & Pitfalls

• Choose the equation that excludes the unknown you lack (e.g., use v2-form when
time is absent).

• Work symbolically until the end to avoid compounding rounding errors.

• Applying constant-a formulas when a = a(t) or a = a(v). Fix: switch to calculus
forms or energy methods.
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Problem #3. The velocity of a cart is given by the piecewise function v(t) =at, 0 ≤ t ≤ T/2,

aT/2, T/2 < t ≤ T,
with constant a > 0. Find the total displacement in time T .

Solution

Area under v–t: first triangle area 1
2(a T/2)(T/2) = aT 2

8 ; second rectangle area
(aT/2)(T/2) = aT 2

4 . Total ∆x = 3aT 2

8 .

Problem #4. A car accelerates uniformly from rest to 20 m/s in 4 s. Find the acceleration
and distance traveled.

Solution

a = v − v0

t
= 20 − 0

4 = 5 m/s2. Distance ∆x = v0t + 1
2at2 = 0 + 1

2 · 5 · 16 = 40 m.

1.3 Projectile (Equal Heights) D1

Formulas & Concepts

Concept explanation: Horizontal and vertical motions independent in uniform
gravity. Decomposition into components provides closed-form solutions for flight
time, range, and peak height at the same launch/landing height.
Core formulas: 

T = 2v0 sin θ

g
,

R = v2
0 sin 2θ

g
,

H = v2
0 sin2 θ

2g
.

Variable definitions: v0 launch speed; θ launch angle; g gravitational acceleration;
T flight time; R range; H apex height.
Prerequisites & scope: Launch/landing at equal heights; neglect air resistance;
for unequal heights, solve quadratic in t.

Heuristics & Pitfalls

• Separate x and y equations; eliminate t or use symmetry about the apex for time
splits.

• For maximum range at equal heights, use θ = 45◦.

• Using R formula when launch and landing heights differ. Fix: solve general
quadratic and then compute x(T ).
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Problem #5. A projectile is launched at speed v0 and angle θ from flat ground and
lands at the same height. Express the time of flight T , the maximum height H, and the
range R in terms of v0, θ, g.

Solution

T = 2v0 sin θ

g
, H = v2

0 sin2 θ

2g
, R = v2

0 sin 2θ

g
, by separating vertical and horizontal

components and using constant-g kinematics.

Problem #6. Two projectiles launched with the same v0 at angles θ and 90◦ − θ have
equal ranges. What is the ratio of their maximum heights Hθ/H90◦−θ?

Solution

H = v2
0 sin2 θ

2g
. Hence Hθ

H90◦−θ

= sin2 θ

cos2 θ
= tan2 θ.

1.4 Uniform Circular Motion D1

Formulas & Concepts

Concept description: In uniform speed circular motion, the acceleration is cen-
tripetal (centerwards) with magnitude v2/r; period and speed are related by circum-
ference.
Core formulas: 

ac = v2

r
= 4π2r

T 2 ,

T = 2πr

v
.

Variable definitions: r radius; v speed; T period; ac centripetal acceleration.
Prerequisites & scope: Speed constant; acceleration direction changes; for non-
uniform circular motion add tangential component.

Heuristics & Pitfalls

• Draw radial/tangential components explicitly; set at = 0 for UCM.

• Vertical circle normals: at the top, T + mg = mv2/r; at the bottom, T − mg =
mv2/r.

• Minimum speed at the top for a taut string (no slack): vtop ≥ √
gr (else T = 0 at

the top).

• Treating centripetal force as an extra force. Fix: centripetal is the net radial
component of existing forces.
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Problem #7. A bead moves in a circle of radius r with period T . Compute its speed
and centripetal acceleration.

Solution

v = 2πr

T
and ac = v2

r
= 4π2r

T 2 .

1.5 Relative Motion D1

Formulas & Concepts

Concept explanation: Relative velocity cancels observer motion: the velocity of
A relative to B is v⃗A − v⃗B.
Core formula:

v⃗A/B = v⃗A − v⃗B.

Variable definitions: v⃗A/B velocity of A relative to B; v⃗A, v⃗B velocities in an
inertial frame.
Prerequisites & scope: Within Galilean (non-relativistic) regime; in 2D/3D apply
component-wise.

Heuristics & Pitfalls

• Move to the target’s rest frame to align directions and simplify timing.

• For winds/rivers, remove drift by aiming to oppose the current component.

• Boundary condition: if v ≤ u, landing directly across is not possible; you will be
swept downstream and must land downstream.

• Superposing speeds scalarly when directions are different. Remedy: take difference
of vectors component-wise.

Problem #8. A river of width W flows east at speed u. A boat of speed v relative to
water aims at angle α north of west to land directly across. Find α and the crossing time,
assuming v > u.

Solution

Require zero east drift: west component equals current, so v cos α = u and α =
arccos(u/v). North component is v sin α =

√
v2 − u2, so time t = W√

v2 − u2
.
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1.6 Calculus Forms & Graph Areas D2

Formulas & Concepts

Concept explanation: With acceleration varying, kinematics is found by integrat-
ing velocity and acceleration; graph areas are summaries of change.
Core formulas:

v = dx

dt
, a = dv

dt
= d2x

dt2 .

v(t) = v(t0) +
∫ t

t0
a(τ) dτ, x(t) = x(t0) +

∫ t

t0
v(τ) dτ.

∆x =
∫

v dt (area under v–t), ∆v =
∫

a dt (area under a–t).

Chain rule: a = dv

dt
= dv

dx
v ⇒ v dv = a(x) dx.

If a = const: v2 = v2
0 + 2a (x − x0).

Variable definitions: x, v, a position/velocity/acceleration; t time; integrals are
definite over the time interval.
Prerequisites & scope: Differentiability over interval; interpret signed areas for
direction-sensitive quantities.

Heuristics & Pitfalls

• Read slopes of x–t as v and slopes of v–t as a; use areas for accumulated change.

• When a = a(v) or a = a(x), separate variables via v dv = a dx to avoid time
explicitly.

• If motion crosses turning points where v = 0, integrate piecewise and track signs
to avoid taking an incorrect branch.

• Confusing displacement with distance on v–t when v changes sign. Fix: integrate
absolute value for distance.

Problem #9. An object has acceleration a(t) = a0 + bt with constants a0, b. If x(0) = 0
and v(0) = v0, find x(t).

Solution

Integrate: v(t) = v0 +
∫ t

0(a0 + bτ) dτ = v0 + a0t + 1
2bt2. Then x(t) =

∫ t
0 v(τ) dτ =

v0t + 1
2a0t

2 + 1
6bt3.
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Problem #10. A particle obeys dx

dt
= k

√
x with k > 0 and x(0) = 0. Find x(t).

Solution

Separate: dx√
x

= k dt ⇒ 2
√

x = kt + C. With x(0) = 0, C = 0. Hence x(t) = k2t2

4

and v(t) = k2t

2 .

2 Unit 2: Newtonian Dynamics
Coverage checklist: Newton’s laws; common forces (weight, spring, friction, normal); free-body
diagrams; non-uniform circular motion; variable force and impulse

2.1 Newton’s Laws and Free-Body Diagrams D1

Formulas & Concepts{ ∑
F⃗ = ma⃗ ; action–reaction pairs on separate bodies.

Heuristics & Pitfalls

• Split each body; sketch clean FBDs and project along convenient directions.

• Don’t place action–reaction pairs on the same drawing; they’re on separate bodies
and cancel only at the system level.

• Use radial/tangential axes for curves or inclined axes on ramps; use friction
direction as unknown and solve for its sign.

• For connected bodies (strings/pulleys), apply kinematic constraints (e.g., equal
string lengths imply proportional accelerations) and apply one tension per ideal
massless string.

• In non-inertial frames (elevators, speeding cars), add −m a⃗frame only if you change
frames explicitly.
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Problem #1. A 5 kg block rests on a horizontal surface. A horizontal force F = 20 N is
applied. Find its acceleration if friction is negligible.

Solution∑
F = ma ⇒ 20 = 5a ⇒ a = 4 m/s2.

Problem #2. A 2 kg block hangs from a string. Find the tension in the string when
the block is at rest.

Solution∑
Fy = 0 ⇒ T − mg = 0 ⇒ T = 2 · 9.8 = 19.6 N.

2.2 Friction and Springs D1

Formulas & Concepts{
Friction: fs ≤ µsN (variable up to max), fk = µkN,

Spring force: F = −kx (Hooke) within elastic limit.

Heuristics & Pitfalls

• Assume the direction of static friction to be unknown; solve and interpret its sign
from the solution.

• Apply fs ≤ µsN ; on the verge of sliding, take fs,max = µsN . For steady sliding,
use fk = µkN .

• For springs in series, use keq: in series 1
keq

= ∑ 1
ki

, in parallel keq = ∑
ki.

Problem #3. A 3 kg block on a horizontal surface has µk = 0.2. Find the kinetic
friction force when the block slides.

Solution

N = mg = 3 · 9.8 = 29.4 N. fk = µkN = 0.2 · 29.4 = 5.88 N.
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Problem #4. A spring with constant k = 200 N/m is compressed by x = 0.1 m. Find
the restoring force.

Solution

F = −kx = −200 · 0.1 = −20 N (opposite to compression).

2.3 Non-uniform Circular Motion D1

Formulas & Concepts{
Radial:

∑
Fr = mv2/r ; tangential:

∑
Ft = mat.

Heuristics & Pitfalls

Split radial and tangential components explicitly; centripetal is net radial.

Problem #5. A car of mass m rounds a curve of radius r = 50 m at v = 20 m/s. Find
the required centripetal force.

Solution

Fc = mv2

r
= m

400
50 = 8m N.

Problem #6. A ball on a string swings in a vertical circle of radius r. At the top, the
tension is T and speed is v. Write the centripetal force equation.

Solution

At the top, T + mg = mv2

r
(both point inward).

2.4 Impulse and Variable Forces D2

Formulas & Concepts {
Impulse: J⃗ =

∫
F⃗ dt = ∆p⃗.

Heuristics & Pitfalls

Extrapolate force-time profiles for varying forces; examine external impulses for
system imparted momentum changes.
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Problem #7. A constant force F = 10 N acts on a mass for ∆t = 3 s. Find the impulse
delivered.

Solution

J = F∆t = 10 · 3 = 30 N · s.

Problem #8. A particle’s momentum changes from p⃗i = (5, 0) kg·m/s to p⃗f =
(5, 10) kg·m/s in 2 s. Find the average force.

Solution

J⃗ = ∆p⃗ = (0, 10) kg·m/s. F⃗avg = J⃗

∆t
= (0, 5) N.

3 Unit 3: Work, Energy, Power
Coverage checklist: Work W =

∫
F⃗ · dr⃗; Work–Energy theorem; potential energies (gravity,

spring); mechanical energy conservation; power (instantaneous vs average); conservative fields
(Fx = − dU/dx)

3.1 Work and the Work–Energy Theorem D1

Formulas & Concepts
For constant F and displacement d at angle θ : W = Fd cos θ,

Work–Energy: ∆K = Wnet,

Power: instantaneous P = F⃗ · v⃗, average over ∆t : P̄ = ∆W

∆t
.

Heuristics & Pitfalls

• Choose the system to eliminate internal forces; only external work should be
considered.

• Include nonconservative work explicitly (friction, thrust). For rolling without
slipping, static friction often does no work on the rolling body.

• Check for indications by comparing the endpoints: Ki + Ui vs. Kf + Uf .
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Problem #1. A 10 kg block is pushed 5 m horizontally by a constant force F = 30 N.
Find the work done.

Solution

W = Fd cos θ = 30 · 5 · cos 0 = 150 J.

Problem #2. A net force of 50 N accelerates a 5 kg mass from rest over 10 m. Find the
final kinetic energy and speed.

Solution

Wnet = 50 · 10 = 500 J. By work-energy theorem, ∆K = Wnet = 500 J. Then
1
2mv2 = 500 ⇒ v =

√
200 = 10

√
2 m/s.

3.2 Potential Energy and Conservation D1

Formulas & Concepts{
Ug = mgh (near-Earth), Us = 1

2kx2,

Conservation (when nonconservative work zero): Ki + Ui = Kf + Uf .

Heuristics & Pitfalls

Use reference U = 0 conveniently; only differences matter.

Problem #3. A 2 kg block falls h = 5 m from rest. Find its speed at the bottom using
energy conservation.

Solution

Ki + Ui = Kf + Uf ⇒ 0 + mgh = 1
2mv2 + 0 ⇒ v =

√
2gh =

√
2 · 9.8 · 5 =

√
98 ≈

9.9 m/s.

Problem #4. A spring (k = 100 N/m) is compressed by x = 0.2 m. Compute the stored
elastic potential energy.

Solution

Us = 1
2kx2 = 1

2 · 100 · 0.04 = 2 J.

3.3 Conservative Fields D2

Formulas & Concepts

Fx = −, dfracdUdx

Path independence in conservative fields; use energy methods when applicable.
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Heuristics & Pitfalls

Use energy methods if forces are conservative; verify curl-free areas.

Problem #5. A mass moves in a potential U(x) = 1
2kx2. Find the force acting on it.

Solution

F⃗ = −dU

dx
ı̂ = −kx ı̂ (Hooke’s law in 1D).

Problem #6. Show that gravitational potential U = −GMm

r
gives force F = −GMm

r2
(radial).

Solution

First compute dU

dr
= d

dr

(
− GMm r−1

)
= +GMm

r2 . Therefore the radial force is

F⃗ = −dU

dr
r̂ = −GMm

r2 r̂ (attractive, inward).

4 Unit 4: Momentum & Collisions
Coverage checklist: Momentum p⃗ = mv⃗; impulse; momentum conservation; elastic/inelastic/fully
inelastic collisions; center of mass; rocket equation

4.1 Momentum and Impulse D1

Formulas & Concepts

Concept explanation: Momentum measures motion; impulse is the total effect of
force over time and is equal to the change in momentum.
Core formulas:

p⃗ = m v⃗,

J⃗ =
∫ t2

t1
F⃗ dt = ∆p⃗,

System: P⃗ =
∑

i

miv⃗i, ∆P⃗ = J⃗ext. (If J⃗ext = 0, P⃗ conserved)

Variable definitions: p⃗ momentum; P⃗ total momentum; J⃗ impulse; F⃗ external
force; m mass; v⃗ velocity.
Prerequisites & scope: Valid for Newtonian mechanics; for varying mass systems,
take care with momentum flux (see rockets).
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Heuristics & Pitfalls

• Identify a closed system (no external impulse) to use momentum conservation
immediately.

• For short-duration large forces (collisions), use impulse–momentum rather than
force–time details.

• Treating internal forces as external. Fix: define the system to include interacting
bodies so internal forces cancel.

Problem #1. A 4 kg object moves with velocity v⃗ = (6, 8) m/s. Find its momentum
vector and magnitude.

Solution

p⃗ = mv⃗ = 4(6, 8) = (24, 32) kg·m/s, so |p⃗| =
√

242 + 322 = 40 kg·m/s and the
direction matches v⃗.

Problem #2. A force F (t) = 10t N acts on a particle from t = 0 to t = 2 s. Find the
impulse delivered.

Solution

J =
∫ 2

0 10t dt = [5t2]20 = 20 N · s.

4.2 Elastic and Inelastic Collisions D1

Formulas & Concepts

Concept explanation: Collisions conserve total momentum; elastic ones also
conserve kinetic energy. The center-of-mass (COM) frame makes algebra simpler.
Core formulas (1D):

Momentum: m1u1 + m2u2 = m1v1 + m2v2,

Elastic energy: 1
2m1u

2
1 + 1

2m2u
2
2 = 1

2m1v
2
1 + 1

2m2v
2
2,

Result (elastic): v1 = (m1 − m2)u1 + 2m2u2

m1 + m2
, v2 = 2m1u1 + (m2 − m1)u2

m1 + m2
,

Completely inelastic: stick (v1 = v2 = v) = m1u1 + m2u2

m1 + m2
.

Variable definitions: ui initial, vi final velocities; mi masses; all along one line
(1D).
Prerequisites & scope: For oblique/2D, conserve vector momentum and use
geometry; kinetic energy changes via deformation/heat in inelastic cases.

Page 13 of 43



Heuristics & Pitfalls

• Switch to the COM frame where total momentum is zero; velocities reverse in
elastic 1D collisions.

• For 2D glancing collisions, conserve components along orthogonal axes; use
restitution or geometry for angles.

• Enforcing kinetic energy conservation in inelastic impact. Fix: only momentum
is guaranteed; account for energy loss.

Problem #3. Two carts collide elastically in 1D. Mass m1 = 2 kg at u1 = 5 m/s hits
mass m2 = 3 kg at rest. Find v1 and v2.

Solution

v1 = (2 − 3) · 5 + 2 · 3 · 0
5 = −5

5 = −1 m/s. v2 = 2 · 2 · 5 + (3 − 2) · 0
5 = 20

5 =
4 m/s.

Problem #4. In a perfectly inelastic collision, m1 = 4 kg at u1 = 6 m/s collides with
m2 = 2 kg at rest. Find the final velocity.

Solution

v = m1u1 + m2u2

m1 + m2
= 4 · 6 + 0

6 = 4 m/s.

4.3 Center of Mass and System Dynamics D1

Formulas & Concepts

Conceptual explanation: The center of mass (COM) is an average of the mass
distribution of a system; external forces accelerate the COM as if all the mass were
centered at the COM.
Core formulas:

R⃗ =
∑

mir⃗i∑
mi

, V⃗ = ˙⃗
R =

∑
miv⃗i

M
,

M
¨⃗
R =

∑
F⃗ext. (Internal forces cancel in pairs)

Variable definitions: r⃗i, v⃗i positions/velocities; M = ∑
mi total mass; R⃗ COM

position.
Prerequisites & scope: Requires Newton’s third law in internal pairs; for variable
mass, include momentum flux.
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Heuristics & Pitfalls

• Compute COM motion to track overall translation, then analyze internal relative
motion separately.

• In explosions/fragmentation, the COM continues with pre-event velocity if external
forces are negligible.

• Treating internal impulses as changing COM momentum. Fix: only external
impulse changes total momentum.

Problem #5. Two masses m1 = 3 kg at x1 = 0 and m2 = 2 kg at x2 = 5 m lie on a line.
Find the COM position.

Solution

X = m1x1 + m2x2

m1 + m2
= 0 + 10

5 = 2 m.

Problem #6. A system has two equal masses m moving at velocities v⃗1 = (2, 0) and
v⃗2 = (−1, 3) m/s. Find the velocity of the COM.

Solution

V⃗ = mv⃗1 + mv⃗2

2m
= (1, 3)

2 = (0.5, 1.5) m/s.

4.4 Variable Mass and Rockets D2

Formulas & Concepts

Concept explanation: For mass-exchange systems (rockets), momentum conserva-
tion for rocket+exhaust yields logarithmic change in velocity.
Core formulas:

Continuous: m dv⃗ = − v⃗e dm,

with dm < 0 (mass loss), v⃗e exhaust speed relative to rocket,

Ideal Tsiolkovsky (1D): ∆v = ve ln mi

mf

.

Variable definitions: v⃗e exhaust velocity relative to rocket (magnitude ve); mi, mf

initial/final mass; m instantaneous mass.
Prerequisites & scope: Neglect external forces (or include gravity drag separately);
ve constant; exhaust ejected at steady relative speed.
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Heuristics & Pitfalls

• Include gravity losses by subtracting g ∆t from ∆v when appropriate (vertical
ascent approximation).

• Use staging by summing ve ln(mi/mf ) per stage.

• Using exhaust speed relative to Earth instead of rocket. Fix: ve is defined relative
to the rocket.

Problem #7. A rocket has initial mass mi = 1000 kg, final mass mf = 400 kg, and
exhaust speed ve = 2000 m/s. Find ∆v in space (ignoring gravity).

Solution

∆v = ve ln mi

mf

= 2000 ln 1000
400 = 2000 ln 2.5 ≈ 1833 m/s.

Problem #8. A rocket ejects mass at rate ṁ = 10 kg/s with effective exhaust speed
ve = 1500 m/s. Find the instantaneous thrust force.

Solution

Thrust = ṁ ve = 10 · 1500 = 15000 N.

5 Unit 5: Rotational Motion
Coverage checklist: Angular kinematics; torque (|τ | = rF sin θ); moment of inertia; τnet = Iα;
rotational kinetic energy; angular momentum and conservation; rolling without slipping; inertia
integrals

5.1 Angular Kinematics and Dynamics D1

Formulas & Concepts

Concept description: Rotational motion is analog to linear motion: torque is the
rotational analog to force, and moment of inertia of mass.
Core formulas:

ω = dθ

dt
, α = dω

dt
, with constant-α kinematics.

τ = r⃗ × F⃗ , |τ | = r⊥F = rF sin θ,
∑

τ = Iα,

Kr = 1
2Iω2, P = τ ω.

Variable definitions: θ, ω, α angular position/velocity/acceleration; τ torque; I
moment of inertia.
Prerequisites & scope: Rigid body about a fixed axis; I constant in time.
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Heuristics & Pitfalls

• Use the perpendicular lever arm r⊥ for torques; sum about convenient pivots to
kill unknown forces.

• Prefer energy when forces are complicated but conservative; otherwise use ∑
τ =

Iα about the COM or a fixed axis.

• Mixing signs of torques from different reference senses. Fix: choose a positive
rotation sense and stick with it.

Problem #1. A disk of radius r = 0.5 m and moment of inertia I = 2 kg·m2 experiences
a net torque τ = 10 N·m. Find its angular acceleration.

Solution

α = τ

I
= 10

2 = 5 rad/s2.

Problem #2. A flywheel rotating at ω = 20 rad/s has I = 5 kg·m2. Find its rotational
kinetic energy.

Solution

Kr = 1
2Iω2 = 1

2 · 5 · 400 = 1000 J.

5.2 Angular Momentum and Conservation D1

Formulas & Concepts

Explanation of concept: Angular momentum is conserved when no external
torque is applied.
Core formulas: 

L⃗ = I ω⃗ (about fixed axis),
∑

τext = dL⃗

dt
.

If
∑

τext = 0, L⃗ conserved.

Variable definitions: L⃗ angular momentum; I moment of inertia.
Prerequisites & scope: Axis and point of reference must be specified; rolling
applies at instantaneous point of contact.

Heuristics & Pitfalls

• For isolated systems with negligible external torques, apply L⃗ conservation about
a fixed axis.

• Choose the reference point wisely to eliminate unknown torques.
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• Forgetting that static friction can act either way in rolling. Fix: determine its
direction from torque/acceleration requirements.

Problem #3. A disk of radius R rolls without slipping at vcm = 5 m/s. Find ω.

Solution

vcm = ωR ⇒ ω = vcm

R
= 5

R
rad/s.

Problem #4. A solid sphere (I = 2
5mR2) rolls at ω = 10 rad/s and vcm = 2 m/s. Find

its total kinetic energy if m = 3 kg.

Solution

Using no-slip vcm = ωR, we have Iω2 = 2
5mR2ω2 = 2

5mv2
cm. Thus K = 1

2mv2
cm +

1
2Iω2 =

(
1
2 + 1

5

)
mv2

cm = 7
10 mv2

cm = 7
10 · 3 · 4 = 8.4 J.

5.3 Moments of Inertia D2

Formulas & Concepts

Concept description: Moment of inertia is a measure of resistance to angular
acceleration; composition rules and standard shapes allow for rapid calculation.
Core formulas:

I =
∫

r2 dm (axis distance r),

Parallel axis: I = Icm + Md2,

Perpendicular axis (planar lamina): Iz = Ix + Iy.

Variable definitions: Icm about COM axis; d offset; M total mass.
Prerequisites & scope: Perpendicular-axis requires lamina in the plane; parallel-
axis requires fixed, parallel axes.

Heuristics & Pitfalls

• Decompose into standard shapes and sum moments about the same axis.

• Use symmetry to eliminate products of inertia; choose axes through COM when
possible.

• Applying perpendicular-axis to 3D bodies. Fix: valid only for planar laminae.
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Problem #5. A thin rod of mass m and length L rotates about one end. Find its
moment of inertia.

Solution

I =
∫ L

0 x2 dm =
∫ L

0 x2 m

L
dx = m

L

L3

3 = mL2

3 .

Problem #6. A disk of mass M and radius R has Icm = 1
2MR2. Using the parallel-axis

theorem, find I about a point on its rim.

Solution

I = Icm + MR2 = 1
2MR2 + MR2 = 3

2MR2.

5.4 Rolling Without Slipping D1

Formulas & Concepts

Concept description: Rolling is a mixture of translation of the center of mass and
rotation; the no-slip condition ties them together.
Core formulas: {

vcm = ωR,

K = 1
2Mv2

cm + 1
2Iω2.

Variable definitions: R radius; M mass; I moment of inertia; vcm center-of-mass
speed.

Heuristics & Pitfalls

• Static friction can accelerate or decelerate rolling bodies but does no work on the
body in pure rolling.

• Use energy for ramp problems; use ∑
τ = Iα when forces/accelerations are

requested.

Problem #7. A solid cylinder of mass m and radius R is released from rest to roll
without slipping down an incline of height h. Find its speed at the bottom.

Solution

Energy: mgh = 1
2mv2

cm + 1
2Iω2 = 1

2mv2
cm + 1

2(1
2mR2)(v2

cm/R2) = 1
2mv2

cm + 1
4mv2

cm =
3
4mv2

cm, so vcm =
√

4
3gh.
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Problem #8. A rolling sphere moves to the right and speeds up. Determine the
direction of static friction on the sphere.

Solution

For a solid sphere with a > 0, no slip implies friction acts up the incline or in the
direction that provides a torque to increase ω: here, friction acts forward (to the
right) at the contact point to produce a counterclockwise torque consistent with
ω̇ > 0.
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Part II: Oscillations, Waves, Thermodynamics & Fluids

6 Unit 6: Oscillations & Waves
Coverage checklist: SHM; pendulum (small-angle); wave speed v = fλ; superposition/standing
waves; sound and Doppler; SHM ODE

6.1 Simple Harmonic Motion D1

Formulas & Concepts

Concept explanation: SHM occurs when acceleration is proportional to and
opposite to displacement; solutions are sinusoidal with constant amplitude (no
damping).
Core formulas:

x = A cos(ωt + ϕ), v = −Aω sin(ωt + ϕ), a = −ω2x,

T = 2π

ω
, ω =

√
k

m
(mass–spring), Tpend ≈ 2π

√
ℓ

g
(small angle).

Variable definitions: A amplitude; ω angular frequency; ϕ phase; k spring constant;
ℓ pendulum length.
Prerequisites & scope: No damping/driving; small-angle approximation for
pendulum.

Heuristics & Pitfalls

• Use energy partition K + U = 1
2kA2 to find speeds at positions; use phase to

compute time fractions.

• For compound oscillators, reduce to effective keff or ℓeff before applying SHM
formulas.

• Small-angle pendulum: check θmax ≲ 10◦ for T ≈ 2π
√

ℓ/g to be within a percent;
otherwise expect longer T . First-order correction (radians; D2result, memorize
only): T ≈ 2π

√
ℓ/g

(
1 + θ2

0
16

)
.

• Using pendulum period formula at large angles. Fix: restrict to small angles or
use elliptic corrections.
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Problem #1. A mass on a spring follows SHM with amplitude A and period T . What
fraction of the period is spent with |x| > A

2 ?

Solution

Let x(t) = A cos(ωt). The condition |x(t)| > A/2 is equivalent to | cos(ωt)| > 1/2.
It is simpler to calculate the fraction of time for the complementary condition,
|x(t)| ≤ A/2, which corresponds to | cos(ωt)| ≤ 1/2. In one full cycle θ = ωt ∈ [0, 2π),
this holds for θ ∈ [π/3, 2π/3] and θ ∈ [4π/3, 5π/3]. The total angular duration is
(2π

3 − π
3 ) + (5π

3 − 4π
3 ) = π

3 + π
3 = 2π

3 . The fraction of the period for this condition is
2π/3
2π

= 1
3 . Therefore, the fraction of the period spent with |x| > A/2 is 1 − 1/3 = 2/3.

6.2 Waves (Traveling) D1

Formulas & Concepts

Concept explanation: Traveling waves follow v = fλ; boundary conditions set
standing-wave modes; source/observer motion shifts frequency (Doppler).
Core formulas:{

v = fλ, y(x, t) = A cos(kx − ωt + ϕ), k = 2π
λ

, ω = 2πf.

Variable definitions: v wave speed in medium; L length; vo observer speed; vs

source speed.
Prerequisites & scope: Linear superposition; small amplitudes; Doppler formula
assumes vo, vs ≪ v (nonrelativistic).

Heuristics & Pitfalls

• Draw mode shapes to match node/antinode boundary conditions before writing
fn.

• Use a sign diagram for Doppler to avoid sign errors; approaching increases
frequency. For the formula given, this means observer towards source (+vo,
numerator) and source towards observer (−vs, denominator). For receding,
reverse these signs.

• Using v of sound/light incorrectly across media. Fix: use the correct medium
speed for v = fλ.
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Problem #2. A wave has wavelength λ = 2 m and frequency f = 50 Hz. Find its speed.

Solution

v = fλ = 50 · 2 = 100 m/s.

6.3 Standing Waves (Strings/Pipes) D1

Formulas & Concepts

Concept explanation: Boundaries reflect waves; interference of forward and
backward waves creates nodes and antinodes with discrete mode frequencies set by
geometry and boundary conditions. Core formulas:

String fixed ends: fn = nv

2L
, n = 1, 2, . . .

Open/closed pipe:


fn = nv

2L
, n = 1, 2, 3, . . . (both ends open),

fn = (2n − 1)v
4L

, n = 1, 2, 3, . . . (one end closed).

Problem #3. A string of length L = 1.2 m fixed at both ends has fundamental frequency
f1 = 200 Hz. Find the wave speed.

Solution

f1 = v

2L
⇒ v = 2Lf1 = 2 · 1.2 · 200 = 480 m/s.

6.4 Doppler Effect (Fixed Medium) D1

Formulas & Concepts

Concept explanation: Relative motion between source and observer shifts the
detected frequency: approaching raises f ′ and receding lowers it; the medium is
stationary. Core formula:

f ′ = v ± vo

v ∓ vs

f (approach uses top signs).

Variable definitions: v wave speed; vo observer speed; vs source speed.
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Problem #4. An acoustic source emits f = 440 Hz in air with v = 340 m/s. The
observer moves toward the source at vo = 10 m/s while the source moves toward the
observer at vs = 20 m/s. Find the observed frequency.

Solution

f ′ = v + vo

v − vs

f = 350
320 · 440 ≈ 481 Hz.

6.5 SHM ODE and Driven Forms D2

Formulas & Concepts

Concept explanation: The homogeneous SHM ODE has sinusoidal solutions; with
driving and damping, the steady-state response depends on drive frequency and
damping ratio.
Core formulas:

x′′ + ω2
0x = 0 ⇒ x(t) = C cos ω0t + D sin ω0t,

Damped: x′′ + 2ζω0x
′ + ω2

0x = 0, under/critical/over-damped by ζ,

Driven: x′′ + 2ζω0x
′ + ω2

0x = F0

m
cos ωt,

⇒ amplitude peaks near ω ≈ ω0,

for small damping ωpeak ≈ ω0

√
1 − 2ζ2 (ζ ≪ 1).

Variable definitions: ω0 natural frequency; ζ damping ratio; F0 drive amplitude.
Prerequisites & scope: Linear oscillator model; small oscillations; steady-state
assumes transients have decayed.

Heuristics & Pitfalls

• Identify regime via ζ; near resonance, estimate amplification and phase shift.

• Confusing natural and driving frequencies. Fix: keep ω0 (system) distinct from ω
(drive).

Page 24 of 43



Problem #5. For x′′ +ω2x = 0 with x(0) = 0 and ẋ(0) = v0, find x(t) and the maximum
speed.

Solution

The general solution is x(t) = C cos(ωt) + D sin(ωt). x(0) = 0 ⇒ C = 0. ẋ(t) =
Dω cos(ωt), so ẋ(0) = v0 ⇒ Dω = v0 ⇒ D = v0/ω. Thus, x(t) = v0

ω
sin(ωt). The

velocity is v(t) = ẋ(t) = v0 cos(ωt). The maximum speed is the amplitude of v(t),
which is |v0|.

7 Unit 7: Fluids & Thermodynamics
Coverage checklist: Hydrostatics (pressure/buoyancy); continuity; Bernoulli; ideal gas; First Law
and engines; entropy

7.1 Hydrostatics and Buoyancy D1

Formulas & Concepts

Concept explanation: Static fluids exert pressure that increases with depth; the
buoyant force equals the weight of displaced fluid (Archimedes).
Core formulas: {

P = P0 + ρgh (hydrostatic pressure),
Fb = ρgVdisp (buoyancy).

Variable definitions: P0 reference pressure (often atmospheric at h = 0); ρ fluid
density; h depth; Vdisp displaced volume.
Prerequisites & scope: Fluid at rest (no flow), constant ρ with depth (or integrate
if varying); neglect surface tension unless specified.

Heuristics & Pitfalls

• Draw free-body diagrams (FBD) of floating/sinking bodies: set Fb vs weight vs
any tension to solve equilibrium.

• Choose a definite reference level for h and keep P0 the same when comparing
points.

• Submerged fraction for floating: Vsub

V
= ρb

ρ
(with 0 < ρb ≤ ρ).

• If ρb > ρ and the object is released freely, the initial net force is downward:
mg − Fb > 0.

• If later supported (bottom contact or tension), static equilibrium requires T +Fb =
mg.

• Gauge vs absolute pressure: ∆P = ρgh is a gauge difference; absolute pressure is
P = Patm + ρgh when the surface is open to atmosphere.
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• Using object’s volume instead of displaced volume for Fb. Fix: use actual displaced
fluid volume (submerged part only).

Problem #1. A block of volume V and density ρb floats in a liquid of density ρ. What
fraction of its volume is submerged?

Solution

At equilibrium ρgVsub = ρbgV , so Vsub/V = ρb/ρ.

7.2 Continuity and Bernoulli D1

Formulas & Concepts

Concept explanation: In steady incompressible flow, mass conservation gives
Av = const; along a streamline with negligible viscosity, mechanical energy per
volume is constant (Bernoulli).
Core formulas:{

Continuity: A1v1 = A2v2 (ρ constant).
Bernoulli: P + 1

2ρv2 + ρgy = const (along a streamline).

Variable definitions: A cross-sectional area; v speed; P pressure; y elevation; ρ
density.
Prerequisites & scope: Steady, incompressible, non-viscous flow; apply Bernoulli
along a streamline, not across shocks or with pumps/turbines unaccounted.

Heuristics & Pitfalls

• Check assumptions (steady/incompressible/irrotational) before using Bernoulli;
otherwise use energy loss terms.

• Combine continuity with Bernoulli to eliminate speeds or pressures efficiently.

• Use stagnation points: where v = 0, the total (stagnation) pressure is P0 =
P + 1

2ρv2 upstream along a streamline.

• Using Bernoulli across different streamlines where viscous losses or pumps exist.
Fix: apply along a single streamline and include head gains/losses when needed.

Page 26 of 43



Problem #2. Water flows through a horizontal pipe from diameter D1 = 0.1 m to
D2 = 0.05 m. If v1 = 2 m/s, find v2 using continuity.

Solution

A1v1 = A2v2 ⇒ π(D1/2)2v1 = π(D2/2)2v2 ⇒ v2 = v1
D2

1
D2

2
= 2 0.01

0.0025 = 8 m/s.

Problem #3. At point 1 in a pipe, P1 = 1.0 × 105 Pa, v1 = 2 m/s, y1 = 0. At point 2,
v2 = 5 m/s, y2 = 3 m. Find P2 for water (ρ = 1000 kg/m3).

Solution

Bernoulli: P1+ 1
2ρv2

1 +ρgy1 = P2+ 1
2ρv2

2 +ρgy2. Compute in SI with scientific notation:
1
2ρ(v2

1 − v2
2) = 0.5 × 103 (4 − 25) = −1.05 × 104 Pa and ρg(y2 − y1) = 103 × 9.8 × 3 =

2.94 × 104 Pa. Hence P2 = 1.00 × 105 − 1.05 × 104 − 2.94 × 104 = 6.01 × 104 Pa.

7.3 Ideal Gas and First Law D1

Formulas & Concepts

Concept explanation: PV = nRT holds for ideal gases; the First Law links
changes in internal energy to heat and work with clear sign conventions.
Core formulas:

PV = nRT, U = f
2 nRT,

where f is dof (e.g., f = 3 monatomic, 5 diatomic at room T),
∆U = Q + Won (Won = work done on the system),

Won = −
∫

P dV (so Wby ≡ − Won =
∫

P dV ).

Variable definitions: P, V, T pressure/volume/temperature; n moles; R gas con-
stant; Q heat into system; Won work on system; Wby work done by the gas; U
internal energy.
Prerequisites & scope: Ideal gas approximation; U depends only on T for ideal
gases; sign convention must be consistent.

Heuristics & Pitfalls

• Identify process (isochoric/isobaric/isothermal/adiabatic) to pick W, Q, ∆U
quickly.

• Draw P–V diagrams: areas give work; direction indicates sign.

• Mixing sign conventions for work. Fix: adopt ∆U = Q + Won (work on system
positive) consistently; then Wby = −Won.
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Problem #4. An ideal gas undergoes an isothermal expansion from volume V1 to V2 at
temperature T . Find the work done by the gas.

Solution

W =
∫ V2

V1
nRT

V
dV = nRT lnV2

V1
.

Problem #5. An ideal gas at P = 2 × 105 Pa and V = 0.01 m3 has n = 1 mol. Find the
temperature T using PV = nRT with R = 8.314 J/(mol·K).

Solution

T = PV

nR
= 2 × 105 · 0.01

1 · 8.314 ≈ 240 K.

7.4 Entropy and Carnot D1

Formulas & Concepts

Concept explanation: Entropy quantifies thermal disorder and increases in irre-
versible processes; Carnot gives the maximum efficiency of heat engines between two
reservoirs.
Core formulas: 

∆S =
∫

rev

δQ

T
,

Carnot bound: ηmax = 1 − Tc

Th

.

Variable definitions: S entropy; Th, Tc hot/cold absolute temperatures; δQ in-
finitesimal heat (reversible path).
Prerequisites & scope: Absolute temperatures (Kelvin); reversible paths for
definition; real engines achieve less than Carnot due to irreversibilities.

Heuristics & Pitfalls

• Compute ∆S along a convenient reversible path (e.g., isothermal + isochoric
steps).

• For engine limits, compare cycle temperatures to Th, Tc to bound η quickly.

• Using Celsius in η = 1 − Tc/Th. Fix: convert to Kelvin.
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Problem #6. A Carnot engine operates between Th = 500 K and Tc = 300 K. Find its
maximum efficiency.

Solution

ηmax = 1 − Tc

Th

= 1 − 300
500 = 0.4 = 40%.

Problem #7. An ideal gas expands reversibly at constant T = 400 K from V1 = 1 m3 to
V2 = 2 m3. Find the entropy change if n = 1 mol.

Solution

∆S = Qrev

T
= nRT ln(V2/V1)

T
= nR ln 2 = 8.314 ln 2 ≈ 5.76 J/K.

7.5 Heat Engines and Efficiency D1

Formulas & Concepts

Core formulas: 
Wby =

∫
P dV, Won = −Wby, η = Wby

Qh

,

ηmax, Carnot = 1 − Tc

Th

.

Variable definitions: Qh heat absorbed from hot reservoir; Th, Tc absolute temper-
atures of hot/cold reservoirs; Wby work done by the gas.

Part II: Oscillations, Waves, Thermodynamics and Fluids Practice
Pointers
• Physics Bowl Waves & Sound Problem 3 Page: 4

• Physics Bowl Thermodynamics & Phase Change Problem 4 Page: 5

• Physics Bowl Thermodynamics & Phase Equilibrium Problem 6 Page: 7

• Physics Bowl Fluid Mechanics Problem 11 Page: 12

• Physics Bowl Fluid Mechanics & Projectile Motion Problem 18 Page: 19

• Physics Bowl Thermodynamics & Engines Problem 19 Page: 20

• Physics Bowl Oscillations Problem 24 Page: 25

• Physics Bowl Oscillations Problem 31 Page: 31
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Part III: Electricity & Magnetism

8 Unit 8: Electrostatics
Coverage checklist: Coulomb force; electric field/potential; capacitors and energy; Gauss’s law

8.1 Coulomb, Field and Potential D1

Formulas & Concepts

Concept explanation: Point charges interact by an inverse-square law; electric
field and potential describe force per unit charge and energy per unit charge.
Core formulas: 

|F⃗ | = k
|q1q2|

r2 (along the line of centers),

E⃗ = F⃗

q
, V = U

q
, ∆U = −q

∫
E⃗ · dr⃗,

Point charge: E = 1
4πε0

Q

r2 , V = 1
4πε0

Q

r
.

Variable definitions: q, Q charges; r separation; k = 1/(4πε0); U potential energy.
Prerequisites & scope: Electrostatics (charges at rest); superposition holds; signs
determine directions.

Heuristics & Pitfalls

• Apply symmetry (dipoles, rings, infinite sheets) to cancel parts before integrating.

• Apply potential for conservative additions first, then differentiate to get fields.

• Not remembering vector directions for E⃗ and F⃗ . Fix: graph direction first,
calculate magnitude second.

Problem #1. Two point charges +Q are at (±a, 0). Find the electric field on the y-axis
at (0, y).

Solution

Horizontal components cancel; vertical add: Ey = 2 kQ
y

(a2 + y2)3/2 .

Key Insight

Constants/units: ε0 = 8.85 × 10−12 F/m, µ0 = 4π × 10−7 H/m, c = 3.00 × 108 m/s,
e = 1.60 × 10−19 C. Use SI unless specified.
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8.2 Capacitors and Energy D1

Formulas & Concepts

Concept explanation: A capacitor is a device that holds equal and opposite
charge on two conductors with a gap or dielectric between them. The stored charge
at a given potential difference will be proportional to the geometry and material.
Networks simplify by simple series/parallel formulas and energy can be traced by
U = 1

2CV 2.
Core formulas:

C = ε0
A

d
(parallel plates in vacuum), C = εrε0

A

d
(uniform dielectric),

Series: 1
Cs

=
∑ 1

Ci

, Parallel: Cp =
∑

Ci,

U = 1
2CV 2 = 1

2QV = Q2

2C
.

Variable definitions: A plate area; d separation; ε0 vacuum permittivity; εr relative
permittivity; Q charge; V voltage.
Prerequisites & scope: Edge effects neglected; linear dielectrics; use equivalent
capacitance to reduce networks.

Heuristics & Pitfalls

• Parallel by series and symmetry simplify before writing node/loop equations.

• Use U = 1
2CV 2 to compare energy storage or redistribution after reconfiguration.

• Assuming charge conservation on each plate when switches change connectivity.
Fix: conserve charge on isolated conductors only.

Problem #2. Two capacitors C1 = 2 µF and C2 = 3 µF are in series. Find the equivalent
capacitance.

Solution

1
Cs

= 1
C1

+ 1
C2

= 1
2 + 1

3 = 5
6 ⇒ Cs = 6

5 = 1.2 µF.
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Problem #3. A capacitor with C = 10 µF is charged to V = 50 V. Find the energy
stored.

Solution

U = 1
2CV 2 = 1

2 · 10 × 10−6 · 2500 = 12.5 × 10−3 = 12.5 mJ.

8.3 Gauss’s Law D1

Formulas & Concepts

Concept explanation: The flux of E⃗ through a closed surface equals enclosed
charge over ε0; symmetry lets you get fields without integration.
Core formula: ∮

E⃗ · dA⃗ = Qenc

ε0
.

Variable definitions: Qenc charge enclosed; dA⃗ outward area element; choose
Gaussian surface aligned to symmetry.
Prerequisites & scope: Use for infinite planes/cylinders/spheres; for conductors,
E = 0 inside and charges reside on surfaces. Within uniform dielectrics/insulators
with embedded charge, fields may exist inside the material (i.e., E need not vanish).
Under D1: memorize the integral statement; derivations are not required.

Heuristics & Pitfalls

• Pick surfaces where E is constant and parallel to dA⃗ over large patches (sphere/-
cylinder/plane).

• For conductors in electrostatics, set Einside = 0 and use boundary conditions
for surface charge; for dielectrics, prefer symmetry and superposition without
advanced D⃗ formalism.

• Choosing a Gaussian surface that doesn’t match symmetry, forcing difficult
integrals. Fix: reselect surface to exploit symmetry.

Problem #4. Using Gauss’s law, find E(r) outside a uniformly charged sphere of radius
R and total charge Q.

Solution

Gaussian sphere: E · 4πr2 = Q/ε0, so E(r) = 1
4πε0

Q

r2 for r ≥ R.

9 Unit 9: DC Circuits
Coverage checklist: Ohm’s law and power; series/parallel reductions; Kirchhoff (KCL/KVL); RC
qualitative; RC exact
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9.1 Ohm’s Law and Reductions D1

Formulas & Concepts

Concept explanation: Ohm’s law relates voltage, current, and resistance; power
forms help rank dissipation; series/parallel laws simplify networks.
Core formulas: 

V = IR, P = IV = I2R = V 2

R
,

Rs =
∑

Ri,
1

Rp

=
∑ 1

Ri

.

Variable definitions: V voltage; I current; R resistance; P power.
Prerequisites & scope: Ohmic elements only; temperature dependence ignored
unless specified.

Heuristics & Pitfalls

• Reduce networks with series/parallel and symmetry; then solve KCL/KVL for
the rest of unknowns alone.

• Equate power by using I2R or V 2/R based on conditions of fixed current/voltage.

• In bridge-type circuits, look for equal potentials in a branch (through symmetry
or KCL) to remove it.

• Mixing fixed-voltage and fixed-current contexts when comparing brightness. Fix:
pick the power form consistent with constraints.

Problem #1. Three resistors of R are in parallel; find the equivalent resistance.

Solution

1
Req

= 1
R

+ 1
R

+ 1
R

so Req = R/3.

9.2 Kirchhoff Laws (KCL/KVL) D1

Formulas & Concepts

Concept explanation: Kirchhoff’s current and voltage laws enforce charge and
energy conservation; first-order RC circuits charge and discharge exponentially with
time constant τ .
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Core formulas: 

KCL:
∑

Iin =
∑

Iout (at a node),
KVL:

∑
∆V = 0 (around a loop),

Charging (step from V0 → V ) :
VC(t) = V +

(
V0 − V

)
e−t/RC ,

I(t) = V − V0

R
e−t/RC ,

Discharging (to 0):
VC(t) = V0 e−t/RC ,

I(t) = −V0

R
e−t/RC ,

General: VC(t) = V∞ +
(
V0 − V∞

)
e−t/τ .

Variable definitions: τ = RC time constant; V source voltage; VC capacitor
voltage; I branch current.
Prerequisites & scope: Linear time-invariant components; piecewise-constant
sources for standard transients.

Heuristics & Pitfalls

• Use series/parallel reductions or source transformations conceptually when helpful,
but solve RC timing with baseline KCL/KVL forms.

• Check for limiting values at t = 0+ and t = ∞ to test expressions; impose
continuity of VC at switching times.

• Time constant: τ = RC for the basic first-order RC considered here.

• Letting capacitor voltage jump at t = 0. Fix: enforce continuity of VC and initial
condition from prior steady state.

Problem #2. An RC circuit with V applied at t = 0 has R = 2 Ω, C = 1 F. Find
VC(t).

Solution

VC(t) = V (1 − e−t/RC) = V (1 − e−t/2).
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Problem #3. Quick check for limits: For any first-order RC with step to V∞, verify
VC(0+) = VC(0−) (no jump) and VC(∞) = V∞. With VC(0−) = V0, the standard form
VC(t) = V∞ + (V0 − V∞)e−t/τ satisfies both.

Solution

Evaluate: VC(0+) = V∞ + (V0 − V∞) = V0 (continuous). As t → ∞, e−t/τ → 0, so
VC → V∞.

9.3 RC Transients (First Order) D1

Formulas & Concepts

Core results: 
τ = RC,

Charge to V : VC(t) = V +
(
V0 − V

)
e−t/RC ,

Discharge to 0: VC(t) = V0e
−t/RC .

Problem #4. An RC circuit with V applied at t = 0 has R = 2 Ω, C = 1 F. Find
VC(t).

Solution

VC(t) = V (1 − e−t/RC) = V (1 − e−t/2).

10 Unit 10: Magnetism & Induction
Coverage checklist: Lorentz force (charges/wires); Faraday-Lenz induction; EM spectrum;
Ampere law

10.1 Lorentz Force D1

Formulas & Concepts

Concept explanation: A moving charge feels qE⃗ and q v⃗ × B⃗; the magnetic force
stays perpendicular to velocity, so it deflects direction without changing speed.
Core formulas: {

F⃗ = q (E⃗ + v⃗ × B⃗)

Variable definitions: q charge; v⃗ particle velocity; E⃗, B⃗ fields.
Prerequisites & scope: Nonrelativistic; right-hand rule for cross products.

Heuristics & Pitfalls

• Use right-hand rule consistently; reverse direction for negative charges.
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• Magnetic force does no work (always perpendicular to v⃗), so magnetic fields alone
cannot change particle speed.

• Using q’s sign incorrectly in q v⃗ × B⃗. Fix: compute direction for positive charge,
then flip if q < 0.

Problem #1. A particle of charge q enters a uniform magnetic field B⃗ perpendicular to
its velocity with speed v. Find the radius and period of its circular motion (neglect E⃗).

Solution

Magnetic force provides centripetal: qvB = mv2

r
⇒ r = mv

qB
. The period is

T = 2πr

v
= 2πm

qB
.

10.2 Magnetic Force on Wires D1

Formulas & Concepts

Core formulas:
F⃗ = I L⃗ × B⃗, |F⃗ | = ILB sin θ.

Variable definitions: I current; L⃗ directed along the current segment with magni-
tude L; B⃗ magnetic field; θ angle between L⃗ and B⃗.

Heuristics & Pitfalls

• For loops, integrate dF⃗ = I d⃗l × B⃗ and exploit symmetry.

Problem #2. A wire of length L carries current I in a uniform field B⃗ perpendicular
to the wire. Find the magnitude of magnetic force.

Solution

F = ILB.

10.3 Faraday-Lenz D1

Formulas & Concepts

Concept explanation: Changing magnetic flux induces an emf that opposes the
change (Lenz); steady currents set magnetic fields constrained by Ampère’s law.
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Core formulas:E =
∮

∂S
E⃗ · d⃗l = −dΦB

dt
, ΦB =

∫∫
S

B⃗ · dA⃗, ΦE =
∫∫

S
E⃗ · dA⃗,

(see Ampère/Maxwell–Ampère for magnetic circulation)

Variable definitions: E induced emf (scalar, E =
∮

∂S E⃗ · d⃗l); ΦB =
∫∫

S B⃗ · dA⃗

magnetic flux; ΦE =
∫∫

S E⃗ · dA⃗ electric flux; Ienc enclosed current.
Prerequisites & scope: Under D1memorize the integral form (no derivation).
Generally assume quasi-static fields; for time-varying fields use Maxwell–Ampère
with displacement current.

Key Insight

Terminology note: Electric circulation refers to the line integral of the electric field
that defines emf, E =

∮
∂S E⃗ · d⃗l. Magnetic circulation refers to

∮
B⃗ · d⃗l as used in

Ampère/Maxwell–Ampère. These are distinct: E is a scalar (emf), while E⃗ and B⃗
are fields.

Heuristics & Pitfalls

• Sketch the loop and determine the positive normal; apply Lenz’s rule to deduce
the direction of the induced current.

• Apply circular/rectangular Amperian loops along symmetry for infinite wires/-
solenoids.

• Missing displacement current for charging capacitors. Fix: include ε0 dΦE/dt in
Maxwell–Ampère when fields vary.

Problem #3. In a loop of area A, the magnetic field increases as B(t) = B0 + kt. Find
the induced emf.

Solution

E =
∣∣∣∣∣dΦ
dt

∣∣∣∣∣ =
∣∣∣∣∣d(BA)

dt

∣∣∣∣∣ = kA.

10.4 Ampere and Maxwell–Ampere D2

Formulas & Concepts

Core formulas:
∮

B⃗ · d⃗l = µ0Ienc (steady currents),

Maxwell–Ampere (general):
∮

B⃗ · d⃗l = µ0Ienc + µ0ε0
dΦE

dt
.
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10.5 EM Spectrum and Maxwell (Concept) D1

Formulas & Concepts

Concept explanation: Electromagnetic waves range from radio to gamma;
Maxwell’s equations couple E⃗ and B⃗ and give wave speed c in vacuum.
Formulas & Concepts:

c = 1
√

µ0ε0
,

Spectrum ordering by frequency: radio → microwave → IR → visible,

then UV → X → gamma.

Prerequisites & scope: Vacuum relations shown; material dispersion alters speed
and wavelength.

Heuristics & Pitfalls

• Recall typical sources: antennas (radio), thermal (IR), electronic transitions
(visible/UV), inner-shell transitions (X/gamma).

• Use c = fλ with medium refractive index n via v = c/n.

Problem #4. Light in vacuum has wavelength λ = 600 nm and speed c = 3 × 108 m/s.
Find its frequency.

Solution

f = c

λ
= 3 × 108

600 × 10−9 = 5 × 1014 Hz.

Problem #5. Rank the following by increasing photon energy: radio, visible, X-ray.

Solution

Higher frequency means higher photon energy E = hf . Ordering: radio < visible <
X-ray.

Part III: Electricity & Magnetism Practice Pointers
• Physics Bowl DC Circuits Problem 7 Page: 8

• Physics Bowl Electricity & Magnetism Problem 8 Page: 9

• Physics Bowl DC Circuits Problem 9 Page: 10

• Physics Bowl RC Circuits Problem 12 Page: 13

• Physics Bowl DC Circuits Problem 22 Page: 23
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Part IV: Optics & Modern Physics

11 Unit 11: Optics
Coverage checklist: Reflection; refraction (Snell); thin lens and magnification; interference/d-
iffraction

11.1 Reflection and Refraction D1

Formulas & Concepts

Concept explanation: Light reflects with equal incident and reflected angles;
refraction across media obeys Snell’s law.
Core formulas:{

θi = θr,

n1 sin θ1 = n2 sin θ2, TIR when θ1 > θc = arcsin(n2/n1) (n1 > n2).

Variable definitions: n refractive index; θ angles measured to the normal.
Prerequisites & scope: Geometric optics regime; isotropic media; polarization
effects ignored here.

Heuristics & Pitfalls

• Draw the normal and principal rays first; search for total internal reflection when
going to a lower-n medium.

• Use reversibility of light to validate constructions.

Problem #1. Light travels from air (n1 = 1) into water (n2 = 1.33) at incidence angle
θ1 = 40◦. Find the refraction angle θ2.

Solution

Snell: n1 sin θ1 = n2 sin θ2 ⇒ sin θ2 = sin 40◦

1.33 ⇒ θ2 ≈ 28.9◦.

Problem #2. Light moves from glass (n = 1.5) to air (n = 1). Find the critical angle
for total internal reflection.

Solution

θc = arcsin n2

n1
= arcsin 1

1.5 ≈ 41.8◦.
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11.2 Thin Lenses and Sign Conventions D1

Formulas & Concepts

Concept explanation: Thin lens imaging follows the lens equation with sign
conventions; magnification uses image and object sizes/orientations.
Core formulas: {

1
f

= 1
s

+ 1
s′ , m = −s′

s
= h′

h
.

Variable definitions: f focal length; s object distance; s′ image distance; m
magnification; h′, h image/object heights.
Prerequisites & scope: Use consistent sign convention (e.g., real is positive);
paraxial approximation.

Heuristics & Pitfalls

• Combine equation + ray diagram: draw two principal rays to confirm the algebraic
image location.

• Remember that negative m indicates inversion; |m| > 1 indicates magnification.

• Sign convention (real-is-positive): take s > 0 for real objects and s′ > 0 for real
images on the opposite side of the lens from the object; s′ < 0 indicates a virtual
image on the object side (then m > 0 and the image is upright).

F F ′

object

virtual image

Problem #3. An object at s = 30 cm forms an image at s′ = −60 cm using a thin lens.
Find the focal length f and magnification m.

Solution

Lens equation: 1
f

= 1
s

+ 1
s′ = 1

30 + 1
−60 = 1

60 , so f = 60 cm. Magnification: m =
−s′/s = −(−60)/30 = 2. Since f > 0, it is a converging lens. Since s′ < 0, the
image is virtual. Since m > 0, the image is upright.
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11.3 Interference and Diffraction D1

Formulas & Concepts

Concept explanation: Coherent sources produce interference patterns; finite
apertures make the light diffract, establishing angular scales by wavelength/aperture.
Core formulas:{

Double-slit maxima: d sin θ = mλ,

Single-slit minima: a sin θ = mλ, m = ±1, ±2, . . .

Variable definitions: d slit separation; a slit width; λ wavelength; θ diffraction
angle.
Prerequisites & scope: Small-angle approximations sin θ ≈ θ valid near axis;
coherence required for stable fringes.

Heuristics & Pitfalls

• Map angles to screen positions with y ≈ L tan θ ≈ Lθ for small θ.

• To resolve features, compare λ to a and d to predict fringe spacing/envelope
width.

Problem #4. For double-slit with spacing d and wavelength λ, what is the angle of the
m-th bright fringe?

Solution

d sin θ = mλ ⇒ θ = arcsin(mλ/d) (small-angle: θ ≈ mλ/d).

12 Unit 12: Modern Physics
Coverage checklist: Special relativity (γ, time dilation, length contraction, E = mc2); photoelec-
tric effect; atomic spectra; nuclear decay/half-life

12.1 Special Relativity D1

Formulas & Concepts

Concept explanation: At high speeds, time dilates and lengths contract; en-
ergy–mass equivalence relates rest mass to rest energy.
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Core formulas (with proper vs observed):

γ = 1√
1 − v2/c2

,

Time dilation: ∆t = γ ∆τ (∆τ proper time in moving clock’s frame),

Length contraction: L = L0

γ
(L0 proper length measured at rest with the rod),

Relativistic energy: E = γmc2 (E0 = mc2), p = γmv, E2 = (pc)2 + (mc2)2.

Variable definitions: γ Lorentz factor; v relative speed; c speed of light; ∆τ proper
time (clock’s rest frame); L0 proper length (object’s rest frame); E total energy; E0
rest energy; p relativistic momentum.
Prerequisites & scope: Inertial frames; v along one axis for simple forms; proper
quantities measured in an object’s rest frame.

Heuristics & Pitfalls

• Label frames (S, S’) and identify proper time/length before applying formulas.
D2 Approximation for v ≪ c: γ ≈ 1 + 1

2(v/c)2 (derivation and series methods belong
to D2).

Problem #1. A spaceship moves at 0.8c relative to Earth. What factor relates proper
time to dilated time?

Solution

γ = 1/
√

1 − 0.82 = 5
3 .

12.2 Photoelectric Effect D1

Formulas & Concepts

Concept explanation: Electrons emit when photon energy exceeds the work
function; the threshold frequency is fth = ϕ/h.
Core formulas: {

Kmax = hf − ϕ, fth = ϕ/h,

Variable definitions: h Planck constant; ϕ work function.
Prerequisites & scope: Idealized models; surface effects and detector thresholds
may alter observed Kmax.

Heuristics & Pitfalls

• Stopping potential depends on frequency (threshold via fth = ϕ/h), not intensity.

• In a Kmax–f plot, slope = h, vertical intercept = −ϕ.
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• Increasing intensity raises saturation current but does not change stopping poten-
tial.

Problem #2. Light of frequency f hits a metal with work function ϕ. Write the
maximum kinetic energy of ejected electrons.

Solution

Kmax = hf − ϕ.

12.3 Nuclear Decay Basics D1

Formulas & Concepts

Core formulas:
N(t) = N0 2−t/T1/2 = N0e

−λt, λ = ln 2
T1/2

.

Heuristics & Pitfalls

• For decay chains, use activity A = λN ; independent branches superpose exponen-
tials.

• Plot ln N vs t to extract λ from the slope.

Part IV: Optics & Modern Physics Practice Pointers
• Physics Bowl Geometric Optics Problem 21 Page: 22

• Physics Bowl Geometric Optics Problem 25 Page: 26

• Physics Bowl Modern Physics Problem 32 Page: 31

• Physics Bowl Geometric Optics Problem 34 Page: 32
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