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A Letter to the Reader

Dear Reader,

Thank you for opening this guide. It aspires to be a quiet companion on your
learning journey. Physics may seem like a towering mountain from afar, but
up close, it resembles a garden.

May this book encourage you to pause and admire the flowers by the roadside,
to look up at the starry sky and moonlight.

D1 is like each new encounter; D2 invites you to take one more step: perform
a small derivation, use an approximation, or see the same landscape with
greater clarity. Don’t fear D2—view it as an invitation to pause, ask “Why?”,
and then lift your gaze to take in the scenery.

If you get stuck, try these three things: sketch another diagram; study a
simpler boundary case first; change only one variable at a time. Most
confusions will eventually clear.

May this guide reward your Curiosity, Creativity, and Caution. And may the
world hold just a little more wonder. Wishing you smooth learning and
steady progress.

Ray Zhou
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Reading Instructions

o Purpose: This guidebook is a study guide to Physics Bowl D1/D2. Use it to go over

key concepts and trends, then practice.

o Structure: Material is divided into parts (Mechanics, Dynamics, Waves/EM, Optics).

Inside each part, boxes contain formulas, heuristics, and solutions.

« Practice pointers: The list items are metadata only (Contest/Year/Division/Prob-

lem/Page). Problem statements are in official sources.

o Navigation: There are hyperlinks provided throughout the PDF to facilitate faster

jumps.

Difficulty Legend

D1. Baseline knowledge and methods; no calculus derivations; aimed for D1 questions.

D2: More substantial topics and brief derivations (calculus/ODE/approximations);
aimed for D2 or when principles are required.

D1 chapters may list some approximation results for memorization purposes alone;
derivations will be at P?.

Notation & Conventions

Units: ST as default. Gravitation on Earth: g = 9.8 m/s? unless otherwise stated.
Always m/s? (or ms™2). Angles: radians except when a symbol for degrees is shown.

Vectors: Vectors are denoted by arrows (e.g., ¢); magnitudes v = ||7||. Use components
Vg, Uy With 7, 7.

emf vs field: Use £ for emf (scalar); E for electric field (vector). When magnitude is
intended, write |E|. Ezample (Faraday-Lenz): € = §55 E-dl (emf) is to be distinguished
from the field E.

Common symbols: Circuits use V' (voltage), I (current), R (resistance), C' (capaci-
tance). Induced emf uses £ (not E). Electric field is £. Waves use v (speed in medium),
f (frequency), A (wavelength).

Overloaded symbols: P for pressure (fluids) or power (circuits) depending on context.
Thermodynamics: AU = @ + W (convention: W > 0 means work done on the system).

Sign conventions: Choose axes first and maintain consistency. For Doppler in a
stationary medium, prefer the rule "approach increases frequency; recession decreases”
and employ a sign diagram; see the Waves unit for the formula being given in detail.
For KVL, direction of tracing loop; voltage rises are positive.

Page ii of 43



Disclaimer

This "Physics Bowl D1 + D2 Cheat Sheets” (Version 1.7 by Ray Zhou) is an independent,
non-official study guide created for educational purposes only. It summarizes key concepts,
formulas, heuristics, and original solutions based on standard physics principles and publicly
available Physics Bowl metadata (e.g., Contest/Year/Division/Problem/Page).

Full problem statements are sourced from official AAPT materials—please visit the Ameri-
can Association of Physics Teachers (AAPT) website at aapt.org/programs/physicsbowl
for complete exams and answers.

This guide is provided "as is” without warranties of accuracy or completeness. It is not
endorsed by AAPT and should not be used as a substitute for official resources. Users
should verify information independently. Distributed under CC BY-NC-SA 4.0 license for
non-commercial, educational sharing.

For feedback or questions, contact zhouxinrui2025@163.com, or visit the project on GitHub:
https://qiuxue-yee.github.io/Physics-Bowl-CheatSheets-prepmaterial/.
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Part I: Mechanics

1 Unit 1: Kinematics

Coverage checklist: Vectors vs scalars; constant-acceleration (SUVAT); projectile motion (same-
level range/time/height); uniform circular motion (a. = v?/r, T = 2mr/v); relative motion;
calculus forms v = dx/dt, a = dv/dt D2. areas under v-t and a-t graphs P2

1.1 Vectors & Components P!

Concept explanation: Vectors have both magnitude and direction. The decom-
position of a vector into orthogonal components translates geometric relations into
algebraic relations such that calculations are simple component arithmetic.

Core formulas:

U= (va,0y) (2D), v = U] = /v + 07,
Unit vectors: i = (1,0), 7= (0,1), U= v,i+ v,]j.

Variable definitions: v,,v, scalar components; v speed (magnitude of velocity);
7,7 orthonormal basis.
Prerequisites & scope: Axes must be orthogonal for Pythagorean magnitude;

extend to 3D with k and v = | /v2 + vg + V2.

o Align axes with directions of steepest slopes and launch angles to reduce compo-
nents.

 Separate vectors before writing equations (Newton’s laws, kinematics) to prevent
late trigonometry.

« Mixing magnitude and component equations. Solution: write separate equations
for x and y and add if applicable.
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Problem #1. Resolve velocity vector ¥ = (30m/s, 40 m/s) into magnitude and direction.

v = /302 + 402 = 50m/s. Direction = arctan(40/30) ~ 53.1° above the horizontal.

Problem #2. A force of 100NN acts at 30° to the horizontal. Find its horizontal and
vertical components.

F, =100 cos 30° = 50v/3 N, F, = 100sin 30° = 50 N.

1.2 Constant Acceleration (SUVAT) P!

Concept explanation: Position and velocity are quadratic/linear in time with
constant acceleration, providing closed-form relations (SUVAT equations).
Core formulas:

T = xo + vot + 3at’,

v = vy + at,

v? = vg + 2a (z — 70).
Variable definitions: x position; v velocity; a constant acceleration; subscript 0
initial value; t time; Az = x — x.
Prerequisites & scope: Acceleration must be constant over the interval; otherwise
use calculus forms.

+ Choose the equation that excludes the unknown you lack (e.g., use v*-form when
time is absent).

o Work symbolically until the end to avoid compounding rounding errors.

 Applying constant-a formulas when a = a(t) or a = a(v). Fix: switch to calculus
forms or energy methods.
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Problem #3. The velocity of a cart is given by the piecewise function v(t) =

at, 0<t<T/2, | ) ) ..
with constant a > 0. Find the total displacement in time 7.
al'/2, T/2<t<T,

Area under v—t: first triangle area 1(aT/2)(T/2) = “L*; second rectangle area

2 8
(aT/2)(T/2) = “I°. Total Az = 24L°,

Problem #4. A car accelerates uniformly from rest to 20m/s in 4s. Find the acceleration
and distance traveled.

— 20—0
azvtvoz 7 :5m/82.DistanceAzzvotﬂL%atz:O+%'5'16:40m‘

1.3 Projectile (Equal Heights) P!

Concept explanation: Horizontal and vertical motions independent in uniform
gravity. Decomposition into components provides closed-form solutions for flight
time, range, and peak height at the same launch/landing height.

Core formulas: )
20 sin 0

T =
[
 vgsin26
g
vg sin? @
29
Variable definitions: vy launch speed; 6 launch angle; g gravitational acceleration;
T flight time; R range; H apex height.
Prerequisites & scope: Launch/landing at equal heights; neglect air resistance;
for unequal heights, solve quadratic in t.

Y

)

H:

« Separate x and y equations; eliminate ¢ or use symmetry about the apex for time
splits.

o For maximum range at equal heights, use 6 = 45°.

o Using R formula when launch and landing heights differ. Fix: solve general
quadratic and then compute x(7T).
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Problem #35. A projectile is launched at speed vy and angle 6 from flat ground and
lands at the same height. Express the time of flight 7', the maximum height H, and the
range R in terms of vy, 0, g.

20 sin 0 v2 sin’ 0 v2 sin 20
T = 07, = 027, = 07" by separating vertical and horizontal
g

components and using constant-g kinematics.

Problem #6. Two projectiles launched with the same vy at angles 6 and 90° — ¢ have
equal ranges. What is the ratio of their maximum heights Hy/Hggo 47

vg sin 0 Hy sin? 6 )
= ———— Hence = 5, = tan 0.
2g 90°—0 cos2 6

H

1.4 Uniform Circular Motion P!

Concept description: In uniform speed circular motion, the acceleration is cen-
tripetal (centerwards) with magnitude v?/r; period and speed are related by circum-
ference.

Core formulas:

V2 4Am?r
Qe = — = ——
r T2’
2rr
T =—.
v

Variable definitions: r radius; v speed; T' period; a. centripetal acceleration.
Prerequisites & scope: Speed constant; acceleration direction changes; for non-
uniform circular motion add tangential component.

o Draw radial/tangential components explicitly; set a; = 0 for UCM.

o Vertical circle normals: at the top, T'+ mg = mwv?/r; at the bottom, T'— mg =
2
muv® [r.

« Minimum speed at the top for a taut string (no slack): viop > /g7 (else T'= 0 at
the top).

« Treating centripetal force as an extra force. Fix: centripetal is the net radial
component of existing forces.
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Problem #7. A bead moves in a circle of radius r» with period T'. Compute its speed
and centripetal acceleration.

2y v: An?r

v:TandaC:7: T

1.5 Relative Motion P!

Concept explanation: Relative velocity cancels observer motion: the velocity of
A relative to B is U4 — U5.
Core formula:

Ua/p = Vs — Up.
Variable definitions: ¥4, velocity of A relative to B; ¥4, ¥ velocities in an
inertial frame.
Prerequisites & scope: Within Galilean (non-relativistic) regime; in 2D /3D apply
component-wise.

» Move to the target’s rest frame to align directions and simplify timing.
« For winds/rivers, remove drift by aiming to oppose the current component.

« Boundary condition: if v < u, landing directly across is not possible; you will be
swept downstream and must land downstream.

« Superposing speeds scalarly when directions are different. Remedy: take difference
of vectors component-wise.

Problem #8. A river of width W flows east at speed u. A boat of speed v relative to
water aims at angle o north of west to land directly across. Find « and the crossing time,
assuming v > u.

Require zero east drift: west component equals current, so vcosa = v and o =

w
arccos(u/v). North component is vsina = vv* — u?, so time t = ———.
v2—u

Page 5 of 43



1.6 Calculus Forms & Graph Areas P2

Concept explanation: With acceleration varying, kinematics is found by integrat-
ing velocity and acceleration; graph areas are summaries of change.
Core formulas:

de | _dv_
a’ T a T A

v(t) = v(ty) + ta(T) dr, x(t) = z(ty) + tU(T) dr.

to to
Az = /v dt (area under v—t), Av = /adt (area under a—t).

dv  dv
hai le: a =—=— = .
Chain rule: a prialrn s vdv = a(x)dz

If a = const: v* = v + 2a (z — xp).

v =

Variable definitions: z, v, a position/velocity/acceleration; ¢ time; integrals are
definite over the time interval.

Prerequisites & scope: Differentiability over interval; interpret signed areas for
direction-sensitive quantities.

» Read slopes of z—t as v and slopes of v—t as a; use areas for accumulated change.

e« When a = a(v) or a = a(x), separate variables via vdv = adx to avoid time
explicitly.

« If motion crosses turning points where v = 0, integrate piecewise and track signs
to avoid taking an incorrect branch.

» Confusing displacement with distance on v—t when v changes sign. Fix: integrate
absolute value for distance.
Problem #9. An object has acceleration a(t) = ag + bt with constants ag, b. If 2(0) =0
and v(0) = vy, find z(t).

Integrate: v(t) = vo + fy(ao + b7) dr = vy + agt + £bt%. Then z(t) = [jv(r)dr =
vot + Saot® + 20t
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d
Problem #10. A particle obeys d—f = ky/x with k > 0 and x(0) = 0. Find z(¢).

242
Separate: \67_ =kdt = 2\/r =kt + C. With z(0) =0, C' = 0. Hence z(t) = k4t
x
k2t
and U(t) = 7

2 Unit 2: Newtonian Dynamics

Coverage checklist: Newton’s laws; common forces (weight, spring, friction, normal); free-body
diagrams; non-uniform circular motion; variable force and impulse

2.1 Newton’s Laws and Free-Body Diagrams P!

{ Z F = ma ; action—reaction pairs on separate bodies.

« Split each body; sketch clean FBDs and project along convenient directions.

« Don’t place action-reaction pairs on the same drawing; they're on separate bodies
and cancel only at the system level.

« Use radial/tangential axes for curves or inclined axes on ramps; use friction
direction as unknown and solve for its sign.

 For connected bodies (strings/pulleys), apply kinematic constraints (e.g., equal
string lengths imply proportional accelerations) and apply one tension per ideal
massless string.

o In non-inertial frames (elevators, speeding cars), add —m @game only if you change
frames explicitly.
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Problem #1. A 5kg block rests on a horizontal surface. A horizontal force F' = 20N is
applied. Find its acceleration if friction is negligible.

S F=ma=20=>5a=a=4m/s".

Problem #2. A 2kg block hangs from a string. Find the tension in the string when
the block is at rest.

YF,=0=T—-mg=0=T=2-98=196N.

2.2 Friction and Springs P!

Friction: f; < usN (variable up to max), fr = uxN,
Spring force: F' = —kx (Hooke) within elastic limit.

o Assume the direction of static friction to be unknown; solve and interpret its sign
from the solution.

e Apply fs < usN; on the verge of sliding, take f, max = ps/V. For steady sliding,
use fk = ,U,kN

. . . L. . 1 1 - o
 For springs in series, use keq: in series T = > & 0 parallel keq = > ;.

Problem #3. A 3kg block on a horizontal surface has u; = 0.2. Find the kinetic
friction force when the block slides.

N=mg=3-98=294N. fr =N =0.2-29.4 =588N.
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Problem #4. A spring with constant £ = 200 N/m is compressed by x = 0.1 m. Find
the restoring force.

F =—kx=-200-0.1 =—20N (opposite to compression).

2.3 Non-uniform Circular Motion P!

{Radial: ZFT = va/T ; tangential: ZFt = may.

Split radial and tangential components explicitly; centripetal is net radial.

Problem #5. A car of mass m rounds a curve of radius » = 50m at v = 20m/s. Find
the required centripetal force.

2
L L
r 50

Problem #6. A ball on a string swings in a vertical circle of radius r. At the top, the
tension is T and speed is v. Write the centripetal force equation.

mu?

At the top, T+ mg = —— (both point inward).
r

2.4 Impulse and Variable Forces P2

{Impulse: J = /ﬁdt = Ap.

Extrapolate force-time profiles for varying forces; examine external impulses for
system imparted momentum changes.
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Problem #7. A constant force F' = 10N acts on a mass for At = 3s. Find the impulse
delivered.

J=FAt=10-3=30N"s.

Problem #8. A particle’s momentum changes from p; = (5,0)kg-m/s to p; =
(5,10) kg - m/s in 2s. Find the average force.

. _ T
J=Ap=(0,10)kg - m/s. Foyy = AN (0,5) N.

3 Unit 3: Work, Energy, Power

Coverage checklist: Work W = [ F. dr; Work—Energy theorem; potential energies (gravity,
spring); mechanical energy conservation; power (instantaneous vs average); conservative fields
(F, = —dU/dx)

3.1 Work and the Work-Energy Theorem P!

For constant F' and displacement d at angle 6 : W = F'dcos#,
Work-Energy: AK = W,
. AW

Power: instantaneous P = F - ¢, average over At: P = AL

o Choose the system to eliminate internal forces; only external work should be
considered.

« Include nonconservative work explicitly (friction, thrust). For rolling without
slipping, static friction often does no work on the rolling body.

e Check for indications by comparing the endpoints: K; + U; vs. Ky + Uy.
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Problem #1. A 10kg block is pushed 5m horizontally by a constant force F' = 30 N.
Find the work done.

W = Fdcosf =30-5-cos0=150.

Problem #2. A net force of 50 N accelerates a 5 kg mass from rest over 10 m. Find the
final kinetic energy and speed.

Wiaet = 50 - 10 = 500J. By work-energy theorem, AK = Wy = 500J. Then
Imv? =500 = v = /200 = 10v/2m/s.

3.2 Potential Energy and Conservation P!

— 2
Conservation (when nonconservative work zero): K; + U; = Ky + Uy.

{Ug = mgh (near-Earth), U, = lka?
Use reference U = 0 conveniently; only differences matter.
Problem #3. A 2kg block falls A = 5m from rest. Find its speed at the bottom using

energy conservation.

Ki+Ui:Kf+Uf:>0+mgh:%m7]2+0:>v:\/2g =12:98.5 =98 ~
9.9m/s.

Problem #4. A spring (k = 100N/m) is compressed by x = 0.2m. Compute the stored
elastic potential energy.

Uy = Lka? = 1.100-0.04 = 2.

[

3.3 Conservative Fields P2

F, = — dfracdUdz

Path independence in conservative fields; use energy methods when applicable.
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Use energy methods if forces are conservative; verify curl-free areas.

Problem #5. A mass moves in a potential U(z) = 3ka?. Find the force acting on it.

- dU
F =——1i= —kai (Hooke’s law in 1D).
dx
GM GM
Problem #6. Show that gravitational potential U = o gives force F' = — 2m
r r
(radial).
dUu d GM
First compute e d< — GMm 7“1> =+ ™ Therefore the radial force is
r r r
- d M
F = _d4u I = ¢ 2m I (attractive, inward).
dr r

4 Unit 4: Momentum & Collisions

Coverage checklist: Momentum § = m; impulse; momentum conservation; elastic/inelastic/fully
inelastic collisions; center of mass; rocket equation

4.1 Momentum and Impulse P!

Concept explanation: Momentum measures motion; impulse is the total effect of
force over time and is equal to the change in momentum.
Core formulas:

p=mu,
- ta
J= [ Fdt=Ap

t1

System: P= Zmif)}, AP = J... (If Tt = 0, P conserved)

Variable definitions: p momentum; P total momentum; J impulse; F external
force; m mass; U velocity.

Prerequisites & scope: Valid for Newtonian mechanics; for varying mass systems,
take care with momentum flux (see rockets).
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o Identify a closed system (no external impulse) to use momentum conservation
immediately.

o For short-duration large forces (collisions), use impulse-momentum rather than
force-time details.

o Treating internal forces as external. Fix: define the system to include interacting
bodies so internal forces cancel.

Problem #1. A 4kg object moves with velocity ¥ = (6,8) m/s. Find its momentum
vector and magnitude.

p=mu = 4(6,8) = (24,32) kg - m/s, so |p] = V242 4+ 322 = 40kg - m/s and the
direction matches 7.

Problem #2. A force F(t) = 10tN acts on a particle from ¢ = 0 to t = 2s. Find the
impulse delivered.

J = J210tdt = [5t?]} = 20N - s.

4.2 Elastic and Inelastic Collisions P!

Concept explanation: Collisions conserve total momentum; elastic ones also

conserve kinetic energy. The center-of-mass (COM) frame makes algebra simpler.
Core formulas (1D):

Momentum: miu; + Malls = M1V + Mals,
: o1 2,1 2 _ 1 2,1 2
Elastic energy: smyuj + 5mou; = 5mivy + 5mevs,
. (m1 — mg)ul + 2m2u2 2m1u1 -+ (m2 — ml)ug
Result (elastic): v; = , Vg =
my + mg mi + Mma
miuy + mots

9

Completely inelastic: stick (v; = vy = v) =

mi + mao

Variable definitions: u; initial, v; final velocities; m; masses; all along one line
(1D).

Prerequisites & scope: For oblique/2D, conserve vector momentum and use
geometry; kinetic energy changes via deformation/heat in inelastic cases.
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o Switch to the COM frame where total momentum is zero; velocities reverse in
elastic 1D collisions.

o For 2D glancing collisions, conserve components along orthogonal axes; use
restitution or geometry for angles.

« Enforcing kinetic energy conservation in inelastic impact. Fix: only momentum
is guaranteed; account for energy loss.

Problem #3. Two carts collide elastically in 1D. Mass m; = 2kg at u; = 5m/s hits
mass mqe = 3kg at rest. Find v; and v,.

(2-3)-5+2-3-0 =5 2.2.54+(3-2)-0 20

v = — = —1lm/s. vy = = = =

5 5 5 5
4m/s.

Problem #4. In a perfectly inelastic collision, m; = 4kg at u; = 6 m/s collides with
mo = 2kg at rest. Find the final velocity.

m1u1+m2u2 46+0
v = = =4m/s.
m1+m2 6

4.3 Center of Mass and System Dynamics P!

Conceptual explanation: The center of mass (COM) is an average of the mass
distribution of a system; external forces accelerate the COM as if all the mass were
centered at the COM.

Core formulas:

2 > mT; -
Z mz ) M )
MR = > Fiy. (Internal forces cancel in pairs)

Variable definitions: 7}, ¢; positions/velocities; M = Y m,; total mass; R COM
position.

Prerequisites & scope: Requires Newton’s third law in internal pairs; for variable
mass, include momentum flux.
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o Compute COM motion to track overall translation, then analyze internal relative
motion separately.

o In explosions/fragmentation, the COM continues with pre-event velocity if external
forces are negligible.

o Treating internal impulses as changing COM momentum. Fix: only external
impulse changes total momentum.

Problem #5. Two masses m; = 3kg at x1 = 0 and my = 2kg at x5 = bm lie on a line.
Find the COM position.

_mlfﬂl—i-mgfﬂg _0+10_

X = 2m.

my + Mo N 5

Problem #6. A system has two equal masses m moving at velocities 77 = (2,0) and
Uy = (—1,3) m/s. Find the velocity of the COM.

— m771 +m172 (1,3)
1% o 5 = (0.5,1.5)m/s

4.4 Variable Mass and Rockets P2

Concept explanation: For mass-exchange systems (rockets), momentum conserva-
tion for rocket+exhaust yields logarithmic change in velocity.
Core formulas:

Continuous: m dv = — v, dm,

with dm < 0 (mass loss), v, exhaust speed relative to rocket,

Ideal Tsiolkovsky (1D): Av = v, In i
mpy

Variable definitions: ¢, exhaust velocity relative to rocket (magnitude v.); m;, ms
initial /final mass; m instantaneous mass.

Prerequisites & scope: Neglect external forces (or include gravity drag separately);
v, constant; exhaust ejected at steady relative speed.
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o Include gravity losses by subtracting g At from Av when appropriate (vertical
ascent approximation).

« Use staging by summing v, In(m;/my) per stage.
« Using exhaust speed relative to Earth instead of rocket. Fix: v, is defined relative
to the rocket.
Problem #7. A rocket has initial mass m; = 1000 kg, final mass m; = 400 kg, and

exhaust speed v, = 2000 m/s. Find Av in space (ignoring gravity).

- 1
" 9000 In 4000(? — 200010 2.5 ~ 1833 m/s.

Av =wv.1In
mp

Problem #8. A rocket ejects mass at rate rh = 10kg/s with effective exhaust speed
ve = 1500 m/s. Find the instantaneous thrust force.

Thrust = mv. = 10 - 1500 = 15000 N.

5 Unit 5: Rotational Motion

Coverage checklist: Angular kinematics; torque (|7| = rF sin#); moment of inertia; me = o
rotational kinetic energy; angular momentum and conservation; rolling without slipping; inertia
integrals

5.1 Angular Kinematics and Dynamics P!

Concept description: Rotational motion is analog to linear motion: torque is the
rotational analog to force, and moment of inertia of mass.
Core formulas:

do dw

w=—., «=—, with constant-a kinematics.

dt’ dt’
T=7"xF, |r|=r F=rFsinf, Y 7=Ia,
K, =311 P=r1uw.

— 2

Variable definitions: 6,w, « angular position/velocity/acceleration; 7 torque; [
moment of inertia.
Prerequisites & scope: Rigid body about a fixed axis; I constant in time.
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o Use the perpendicular lever arm r, for torques; sum about convenient pivots to
kill unknown forces.

o Prefer energy when forces are complicated but conservative; otherwise use Y 7 =
Ia about the COM or a fixed axis.

» Mixing signs of torques from different reference senses. Fix: choose a positive
rotation sense and stick with it.

Problem #1. A disk of radius = 0.5m and moment of inertia I = 2kg - m? experiences
a net torque 7 = 10N - m. Find its angular acceleration.

o =

T 10 2
I=3 = Srad/s”.

Problem #2. A flywheel rotating at w = 20rad/s has I = 5kg - m®. Find its rotational
kinetic energy.

K, = Iw2:%-5~4()0:1000J.

1
2

5.2 Angular Momentum and Conservation P!

Explanation of concept: Angular momentum is conserved when no external
torque is applied.
Core formulas:

. dL
L =1 & (about fixed axis), ZTeXt =

If Y 7ot =0, L conserved.

Variable definitions: L angular momentum; / moment of inertia.
Prerequisites & scope: Axis and point of reference must be specified; rolling
applies at instantaneous point of contact.

» For isolated systems with negligible external torques, apply L conservation about
a fixed axis.

o Choose the reference point wisely to eliminate unknown torques.
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» Forgetting that static friction can act either way in rolling. Fix: determine its
direction from torque/acceleration requirements.

Problem #3. A disk of radius R rolls without slipping at v.,, = 5m/s. Find w.

Vem D
R = Rrad/s.

Ven = WR = w =

Problem #4. A solid sphere (I = 2mR?) rolls at w = 10rad/s and ve,, = 2m/s. Find
its total kinetic energy if m = 3 kg.

- : _ 2 _2,.p2,,2 _ 2,2 _ 2
Using no-slip v, = wR, we have [w® = tmRw* = $mvg,. Thus K = smv;, +

172 (11 2 _ 7 ...2 _ 1 —
lw —(2+5>mvcm—10mvcm—10-3-4—8.4J.

5.3 Moments of Inertia P2

Concept description: Moment of inertia is a measure of resistance to angular
acceleration; composition rules and standard shapes allow for rapid calculation.
Core formulas:

I= /T2 dm (axis distance r),
Parallel axis: [ = I, + Md>,

Perpendicular axis (planar lamina): I, = I, + I,,.

Variable definitions: I., about COM axis; d offset; M total mass.
Prerequisites & scope: Perpendicular-axis requires lamina in the plane; parallel-
axis requires fixed, parallel axes.

e Decompose into standard shapes and sum moments about the same axis.

o Use symmetry to eliminate products of inertia; choose axes through COM when
possible.

« Applying perpendicular-axis to 3D bodies. Fix: valid only for planar laminae.
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Problem #5. A thin rod of mass m and length L rotates about one end. Find its
moment of inertia.

Problem #6. A disk of mass M and radius R has I, = %M R?. Using the parallel-axis
theorem, find I about a point on its rim.

[ =TI, +MR?=1IMR?+ MR? = 3MR?,

5.4 Rolling Without Slipping P!

Concept description: Rolling is a mixture of translation of the center of mass and
rotation; the no-slip condition ties them together.
Core formulas:

{Ucm = WRa

17,2 17,2
K = 5]\47]CH1 + 5]&) .
Variable definitions: R radius; M mass; [ moment of inertia; v, center-of-mass
speed.

 Static friction can accelerate or decelerate rolling bodies but does no work on the
body in pure rolling.

o Use energy for ramp problems; use > 7 = I« when forces/accelerations are
requested.

Problem #7. A solid cylinder of mass m and radius R is released from rest to roll
without slipping down an incline of height h. Find its speed at the bottom.

. _ 1 2 1 2 _ 1 2 1,1 2 2 2y 1 2 1 2 _
Energy: mgh = smu;, + 51w® = smu;, + 5(5mR*)(vs,/R?) = smv?, + ymu?, =
3

2 _ /a
TMUZ,, 80 Ve = /39N
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Problem #8. A rolling sphere moves to the right and speeds up. Determine the
direction of static friction on the sphere.

For a solid sphere with a > 0, no slip implies friction acts up the incline or in the
direction that provides a torque to increase w: here, friction acts forward (to the
right) at the contact point to produce a counterclockwise torque consistent with
w > 0.

Part I: Mechanics Practice Pointers

o Physics Bowl Kinematics & Momentum Problem 1 Page: 2
o Physics Bowl Circular Motion & Energy Problem 2 Page: 3
o Physics Bowl Simple Machines & Statics Problem 5 Page: 6
o Physics Bowl Kinematics Problem 10 Page: 11

o Physics Bowl Kinematics Problem 13 Page: 14

o Physics Bowl Work & Energy with Friction Problem 14 Page: 14
o Physics Bowl Rotational Kinematics Problem 15 Page: 16

o Physics Bowl Rolling Dynamics Problem 16 Page: 17

o Physics Bowl Gravitation Problem 17 Page: 18

o Physics Bowl Rolling Energy Problem 20 Page: 21

o Physics Bowl Statics Problem 23 Page: 24

o Physics Bowl Relative Motion Problem 26 Page: 27

o Physics Bowl Circular Motion Problem 27 Page: 28

o Physics Bowl Work & Energy with Friction Problem 28 Page: 28
o Physics Bowl Center of Mass Problem 29 Page: 29

e Physics Bowl Kinematics Problem 30 Page: 30

e Physics Bowl Momentum & Impulse Problem 33 Page: 32

o Physics Bowl Kinematics Problem 35 Page: 33

o Physics Bowl Dynamics & Friction Problem 36 Page: 33

o Physics Bowl Statics Problem 37 Page: 35

o Physics Bowl Rotational Energy Problem 38 Page: 36

o Physics Bowl Kinematics Problem 39 Page: 37
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Part II: Oscillations, Waves, Thermodynamics & Fluids
6 Unit 6: Oscillations & Waves

Coverage checklist: SHM; pendulum (small-angle); wave speed v = f\; superposition/standing
waves; sound and Doppler; SHM ODE

6.1 Simple Harmonic Motion P!

Concept explanation: SHM occurs when acceleration is proportional to and
opposite to displacement; solutions are sinusoidal with constant amplitude (no
damping).

Core formulas:

= Acos(wt +¢), v=—Awsin(wt+¢), a=—w’n,

2 k 14
T = —W, w =/ — (mass-spring), Tpena ~ 27r\/> (small angle).
w m g

Variable definitions: A amplitude; w angular frequency; ¢ phase; k spring constant;
¢ pendulum length.

Prerequisites & scope: No damping/driving; small-angle approximation for
pendulum.

o Use energy partition K + U = %kAQ to find speeds at positions; use phase to
compute time fractions.

o For compound oscillators, reduce to effective keg or f.g before applying SHM
formulas.

« Small-angle pendulum: check 0y, < 10° for T & 27,/¢/g to be within a percent;

D

otherwise expect longer T. First-order correction (radians; P2result, memorize

only): T ~ ZW\/% (1 + %).

o Using pendulum period formula at large angles. Fix: restrict to small angles or
use elliptic corrections.
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Problem #1. A mass on a spring follows SHM with amplitude A and period 7. What
fraction of the period is spent with |z| > 47

Let x(t) = Acos(wt). The condition |z(t)| > A/2 is equivalent to |cos(wt)| > 1/2.
It is simpler to calculate the fraction of time for the complementary condition,
|z(t)| < A/2, which corresponds to | cos(wt)| < 1/2. In one full cycle § = wt € [0, 27),
this holds for 6 € [r/3,27/3] and 0 € [47/3,57/3]. The total angular duration is
(B — %)+ (¥ — %) =%+ % = 2. The fraction of the period for this condition is

% = £. Therefore, the fraction of the period spent with |z| > A/2is1—1/3 = 2/3.

6.2 Waves (Traveling) P!

Concept explanation: Traveling waves follow v = f\; boundary conditions set
standing-wave modes; source/observer motion shifts frequency (Doppler).
Core formulas:

{v = fA, y(z,t) = Acos(kx —wt + @), k= 27”, w=2rf.
Variable definitions: v wave speed in medium; L length; v, observer speed; v,
source speed.

Prerequisites & scope: Linear superposition; small amplitudes; Doppler formula
assumes v,, vs < v (nonrelativistic).

« Draw mode shapes to match node/antinode boundary conditions before writing

Jo-

o Use a sign diagram for Doppler to avoid sign errors; approaching increases
frequency. For the formula given, this means observer towards source (+uv,,
numerator) and source towards observer (—v,, denominator). For receding,
reverse these signs.

« Using v of sound/light incorrectly across media. Fix: use the correct medium
speed for v = f\.
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Problem #2. A wave has wavelength A = 2m and frequency f = 50 Hz. Find its speed.
v=fA=50-2=100m/s.

6.3 Standing Waves (Strings/Pipes) P!

Concept explanation: Boundaries reflect waves; interference of forward and
backward waves creates nodes and antinodes with discrete mode frequencies set by
geometry and boundary conditions. Core formulas:

String fixed ends: f, = %, n=12...

fo = %7 n=1,2,3,... (both ends open),
Open/closed pipe: %Qn —1)v

£, = o "= 1,2,3,... (one end closed).

Problem #3. A string of length L = 1.2m fixed at both ends has fundamental frequency
f1 =200 Hz. Find the wave speed.

I3 :%:ﬂ):2Lf1 —2.1.2-200 = 480 m/s.

6.4 Doppler Effect (Fixed Medium) P!

Concept explanation: Relative motion between source and observer shifts the
detected frequency: approaching raises f’ and receding lowers it; the medium is
stationary. Core formula:

f,_vi-vo

= f (approach uses top signs).
v F v,

Variable definitions: v wave speed; v, observer speed; v source speed.
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Problem #4. An acoustic source emits f = 440Hz in air with v = 340m/s. The
observer moves toward the source at v, = 10m/s while the source moves toward the
observer at vy = 20m/s. Find the observed frequency.

0 390 0~
f_v—vsf_?)zo 440 ~ 481 Hz.

6.5 SHM ODE and Driven Forms P2

Concept explanation: The homogeneous SHM ODE has sinusoidal solutions; with
driving and damping, the steady-state response depends on drive frequency and
damping ratio.

Core formulas:

2" +wir = 0= z(t) = C coswpt + D sinwyt,

Damped: 2" + 2¢wr’ 4+ wiz = 0, under /critical /over-damped by (,
F

Driven: 2" 4 2Cwot’ + wiz = =2 cos wt,
m

= amplitude peaks near w = wy,

for small damping wpeax & wo\/m ((<1).

Variable definitions: wy natural frequency; ( damping ratio; Fy drive amplitude.
Prerequisites & scope: Linear oscillator model; small oscillations; steady-state
assumes transients have decayed.

o Identify regime via (; near resonance, estimate amplification and phase shift.

 Confusing natural and driving frequencies. Fix: keep wy (system) distinct from w
(drive).

Page 24 of 43



Problem #5. For z”+w?z = 0 with 2(0) = 0 and #(0) = vy, find z(¢) and the maximum
speed.

The general solution is z(t) = C cos(wt) + Dsin(wt). z(0) =0 = C = 0. @(t) =

Dw cos(wt), so £(0) = vg = Dw = vg = D = vg/w. Thus, z(t) = @sin(wt). The
w

velocity is v(t) = @(t) = vg cos(wt). The maximum speed is the amplitude of v(t),

which is |vg].

7 Unit 7: Fluids & Thermodynamics

Coverage checklist: Hydrostatics (pressure/buoyancy); continuity; Bernoulli; ideal gas; First Law
and engines; entropy

7.1 Hydrostatics and Buoyancy P!

Concept explanation: Static fluids exert pressure that increases with depth; the
buoyant force equals the weight of displaced fluid (Archimedes).
Core formulas:
{P = Py + pgh (hydrostatic pressure),
Fy = pgVaisp (buoyancy).

Variable definitions: P, reference pressure (often atmospheric at h = 0); p fluid
density; h depth; Viisp displaced volume.

Prerequisites & scope: Fluid at rest (no flow), constant p with depth (or integrate
if varying); neglect surface tension unless specified.

o Draw free-body diagrams (FBD) of floating/sinking bodies: set F}, vs weight vs
any tension to solve equilibrium.

e Choose a definite reference level for h and keep P, the same when comparing
points.

Viu :
b_ P (with 0 < pp < p).
p

e Submerged fraction for floating:

o If p, > p and the object is released freely, the initial net force is downward:
mg — Fp > 0.

o If later supported (bottom contact or tension), static equilibrium requires 7'+ F, =
mg.

« Gauge vs absolute pressure: AP = pgh is a gauge difference; absolute pressure is
P = P, + pgh when the surface is open to atmosphere.
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» Using object’s volume instead of displaced volume for F}. Fix: use actual displaced
fluid volume (submerged part only).

Problem #1. A block of volume V' and density p, floats in a liquid of density p. What
fraction of its volume is submerged?

At equilibrium pgViu, = ppgV', 0 Ve /V = pu/p.

7.2 Continuity and Bernoulli P!

Concept explanation: In steady incompressible flow, mass conservation gives
Av = const; along a streamline with negligible viscosity, mechanical energy per
volume is constant (Bernoulli).

Core formulas:

{Continuity: Ajvy = Asvs (p constant).

Bernoulli: P + % pv? + pgy = const (along a streamline).

Variable definitions: A cross-sectional area; v speed; P pressure; y elevation; p
density.

Prerequisites & scope: Steady, incompressible, non-viscous flow; apply Bernoulli
along a streamline, not across shocks or with pumps/turbines unaccounted.

« Check assumptions (steady/incompressible/irrotational) before using Bernoulli;
otherwise use energy loss terms.

o Combine continuity with Bernoulli to eliminate speeds or pressures efficiently.

« Use stagnation points: where v = 0, the total (stagnation) pressure is P, =
P + $pv? upstream along a streamline.

» Using Bernoulli across different streamlines where viscous losses or pumps exist.
Fix: apply along a single streamline and include head gains/losses when needed.
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Problem #2. Water flows through a horizontal pipe from diameter D; = 0.1m to
Dy =0.05m. If v; = 2m/s, find vy using continuity.

D? 0.01
Ayvy = Agvy = (D1 /2)%01 = 1(D2/2)%v; = vy = vy = = 2 =8
101 = Agug = w(D1/2)%0; = (Do /2)*v2 = vy D2 T 70.0025 /s

Problem #3. At point 1 in a pipe, P, = 1.0 x 10° Pa, v; = 2m/s, y; = 0. At point 2,
vy = 5m/s, y, = 3m. Find P, for water (p = 1000kg/m®).

Bernoulli: Pi+1pv?+pgy; = Pa+3pv3+pgys. Compute in SI with scientific notation:
sp(vf —v3) = 0.5 x 10 (4 — 25) = —1.05 x 10* Pa and pg(y, —y1) = 10° x 9.8 x 3 =
2.94 x 10* Pa. Hence P, = 1.00 x 10° — 1.05 x 10* — 2.94 x 10* = 6.01 x 10* Pa.

7.3 1Ideal Gas and First Law P!

Concept explanation: PV = nRT holds for ideal gases; the First Law links
changes in internal energy to heat and work with clear sign conventions.
Core formulas:

PV =nRT, U =inRT,
where f is dof (e.g., f = 3 monatomic, 5 diatomic at room T),
AU =Q + Wy, (Wy, = work done on the system),

Won = —/PdV (50 Wiy = — Wy = /PdV).
Variable definitions: P, V,T pressure/volume/temperature; n moles; R gas con-
stant; @) heat into system; W,, work on system; W, work done by the gas; U
internal energy.

Prerequisites & scope: Ideal gas approximation; U depends only on 7T for ideal
gases; sign convention must be consistent.

o Identify process (isochoric/isobaric/isothermal/adiabatic) to pick W, Q, AU
quickly.

o Draw P-V diagrams: areas give work; direction indicates sign.

« Mixing sign conventions for work. Fix: adopt AU = Q + W, (work on system
positive) consistently; then Wy, = —W,.
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Problem #4. An ideal gas undergoes an isothermal expansion from volume V; to V, at
temperature 7. Find the work done by the gas.

W = [y2 284V = nRT Iny2.

Problem #5. An ideal gas at P = 2 x 10° Pa and V = 0.01 m® has n = 1mol. Find the
temperature 7" using PV = nRT with R = 8.314 J/(mol - K).

PV 2x10°-0.01

T =
nR 1-8.314

~ 240 K.

7.4 Entropy and Carnot P!

Concept explanation: Entropy quantifies thermal disorder and increases in irre-
versible processes; Carnot gives the maximum efficiency of heat engines between two
reservoirs.

Core formulas:

0Q

AS = X

S rev T ’
Carnot bound: Npax = 1 — —

Th '
Variable definitions: S entropy; T}, 7. hot/cold absolute temperatures; §¢) in-
finitesimal heat (reversible path).
Prerequisites & scope: Absolute temperatures (Kelvin); reversible paths for
definition; real engines achieve less than Carnot due to irreversibilities.

o Compute AS along a convenient reversible path (e.g., isothermal + isochoric
steps).

» For engine limits, compare cycle temperatures to T},, T, to bound n quickly.

« Using Celsius in n = 1 — T, /T},. Fix: convert to Kelvin.
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Problem #6. A Carnot engine operates between T, = 500 K and 7, = 300 K. Find its
maximum efficiency.

T, 300
max:1_7:1_7:0.4:40 .
g T, 500 %

Problem #7. An ideal gas expands reversibly at constant 7' = 400 K from V; = 1m? to
Vo = 2m?. Find the entropy change if n = 1mol.

_ Qrew _ nRTIn(1p/Vi) _ nRIn2=8314In2 ~ 5.76 J/K.

AS T -

7.5 Heat Engines and Efficiency P!

Core formulas:

Wi
Wby = /Pd‘/, Won = _Wby7 n= ﬁ?
Qn
T,
max, Carnot — 1— 70-
Tlmax, Carnot T,

Variable definitions: (), heat absorbed from hot reservoir; T},, T, absolute temper-
atures of hot/cold reservoirs; W, work done by the gas.

Part II: Oscillations, Waves, Thermodynamics and Fluids Practice
Pointers

e Physics Bowl Waves & Sound Problem 3 Page: 4

o Physics Bowl Thermodynamics & Phase Change Problem 4 Page: 5

o Physics Bowl Thermodynamics & Phase Equilibrium Problem 6 Page: 7
o Physics Bowl Fluid Mechanics Problem 11 Page: 12

o Physics Bowl Fluid Mechanics & Projectile Motion Problem 18 Page: 19
o Physics Bowl Thermodynamics & Engines Problem 19 Page: 20

o Physics Bowl Oscillations Problem 24 Page: 25

o Physics Bowl Oscillations Problem 31 Page: 31
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Part III: Electricity & Magnetism

8 Unit 8: Electrostatics

Coverage checklist: Coulomb force; electric field/potential; capacitors and energy; Gauss’s law

8.1 Coulomb, Field and Potential P!

Concept explanation: Point charges interact by an inverse-square law; electric
field and potential describe force per unit charge and energy per unit charge.
Core formulas:

|F| =k ’qng‘ (along the line of centers),
r
L, F U .
E=", v=" AU:—q/E-dﬁ
q q
1
Point charge: F = —Q, V= Q
dreg r? dmeg T

Variable definitions: ¢, () charges; r separation; k = 1/(4mey); U potential energy.
Prerequisites & scope: Electrostatics (charges at rest); superposition holds; signs
determine directions.

« Apply symmetry (dipoles, rings, infinite sheets) to cancel parts before integrating.

« Apply potential for conservative additions first, then differentiate to get fields.

o Not remembering vector directions for E and F. Fix: graph direction first,
calculate magnitude second.

Problem #1. Two point charges +@Q are at (£a,0). Find the electric field on the y-axis
at (0,y).

Y

Horizontal components cancel; vertical add: E, = 2kQ m
a Y

Constants/units: g = 8.85 x 10712 F/m, pg = 47 x 107" H/m, ¢ = 3.00 x 103m/s,
e =1.60 x 10712 C. Use SI unless specified.

Page 30 of 43



8.2 Capacitors and Energy P!

Concept explanation: A capacitor is a device that holds equal and opposite
charge on two conductors with a gap or dielectric between them. The stored charge
at a given potential difference will be proportional to the geometry and material.
Networks simplify by simple series/parallel formulas and energy can be traced by
U= %CVQ.

Core formulas:

A A
C =g i (parallel plates in vacuum), C = ¢, i (uniform dielectric),

1 1
Series: a = Z a, Parallel: C, = Z C;,

Q2
U:%CV2=§QV=§5.

Variable definitions: A plate area; d separation; €y vacuum permittivity; €, relative
permittivity; @) charge; V' voltage.

Prerequisites & scope: Edge effects neglected; linear dielectrics; use equivalent
capacitance to reduce networks.

 Parallel by series and symmetry simplify before writing node/loop equations.

e Use U = %C’V2 to compare energy storage or redistribution after reconfiguration.

« Assuming charge conservation on each plate when switches change connectivity.
Fix: conserve charge on isolated conductors only.

Problem #2. Two capacitors C| = 2 uF and Cy = 3 uF are in series. Find the equivalent
capacitance.

(S N S B
- - =

6
== = Cy,=-=12uF.
c, C, Oy 2 5 H

S| Ot
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Problem #3. A capacitor with C' = 10 uF is charged to V = 50V. Find the energy
stored.

U=3CV?=73-10x107%-2500 = 12.5 x 107% = 12.5mJ.

8.3 Gauss’s Law P?

Concept explanation: The flux of E through a closed surface equals enclosed
charge over ¢p; symmetry lets you get fields without integration.

Core formula:
7{5 . dg: Qenc'
€0

Variable definitions: (@).,. charge enclosed; dA outward area element; choose
Gaussian surface aligned to symmetry.

Prerequisites & scope: Use for infinite planes/cylinders/spheres; for conductors,
FE = 0 inside and charges reside on surfaces. Within uniform dielectrics/insulators
with embedded charge, fields may exist inside the material (i.e., E' need not vanish).
Under P1: memorize the integral statement; derivations are not required.

o Pick surfaces where E' is constant and parallel to dA over large patches (sphere/-
cylinder /plane).

o For conductors in electrostatics, set Eigqe = 0 and use boundary conditions
for surface charge; for dielectrics, prefer symmetry and superposition without
advanced D formalism.

e Choosing a Gaussian surface that doesn’t match symmetry, forcing difficult
integrals. Fix: reselect surface to exploit symmetry.

Problem #4. Using Gauss’s law, find E(r) outside a uniformly charged sphere of radius
R and total charge Q.

Q

=1 —ZfOITZR.
TEY T

Gaussian sphere: F - 471r? = Q /gy, so E(r)

9 Unit 9: DC Circuits

Coverage checklist: Ohm’s law and power; series/parallel reductions; Kirchhoff (KCL/KVL); RC
qualitative; RC exact
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9.1 Ohm'’s Law and Reductions P!

Concept explanation: Ohm'’s law relates voltage, current, and resistance; power
forms help rank dissipation; series/parallel laws simplify networks.
Core formulas:
VQ
V =1IR, P:IV:FR:??

1 1

Variable definitions: V' voltage; I current; R resistance; P power.
Prerequisites & scope: Ohmic elements only; temperature dependence ignored
unless specified.

» Reduce networks with series/parallel and symmetry; then solve KCL/KVL for
the rest of unknowns alone.

« Equate power by using I?R or V?/R based on conditions of fixed current /voltage.

o In bridge-type circuits, look for equal potentials in a branch (through symmetry
or KCL) to remove it.

« Mixing fixed-voltage and fixed-current contexts when comparing brightness. Fix:
pick the power form consistent with constraints.

Problem #1. Three resistors of R are in parallel; find the equivalent resistance.

11 11
— — 4 —+—s0 R, =R/3.
R, mitRT RO BB

9.2 Kirchhoff Laws (KCL/KVL) P!

Concept explanation: Kirchhoff’s current and voltage laws enforce charge and
energy conservation; first-order RC circuits charge and discharge exponentially with
time constant 7.
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Core formulas:

KCL: Z[in = Zlout (at a node),

KVL: Y AV =0 (around a loop),

Charging (step from V5 — V) :
Vel(t) =V + (Vo = V)e /R,

I(t) = V=% ;{% e /RO

Discharging (to 0):
VC(t) = % eit/RC>
1%
I(t) = —Eoe—t/RC

)

General: Ve (t) = Voo + (Vo — Voo> e T

Variable definitions: 7 = RC' time constant; V' source voltage; Vi capacitor
voltage; I branch current.

Prerequisites & scope: Linear time-invariant components; piecewise-constant
sources for standard transients.

o Use series/parallel reductions or source transformations conceptually when helpful,
but solve RC timing with baseline KCL/KVL forms.

o Check for limiting values at ¢ = 07 and t = oo to test expressions; impose
continuity of Vi at switching times.

e Time constant: 7 = RC for the basic first-order RC considered here.

» Letting capacitor voltage jump at t = 0. Fix: enforce continuity of Vi and initial
condition from prior steady state.

Problem #2. An RC circuit with V applied at t = 0 has R = 2€), C = 1F. Find
Ve(t).

Vo(t) = V(1 — e /EC) = V(1 — e7/2),
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Problem #3. Quick check for limits: For any first-order RC' with step to V., verify
Ve(0T) = Ve (07) (no jump) and Vo(oo) = V. With Ve (07) = Vj, the standard form
Vo(t) = Ve + (Vo — Vi )e /7 satisfies both.

Evaluate: Ve (01) = Voo + (Vg — Vi) = Vi (continuous). As ¢ — oo, e7¥/™ — 0, so
VC — VOO.

9.3 RC Transients (First Order) P!

Core results:
T = RC,
Charge to V : Ve(t) =V + (VO — V)e—t/RC’
Discharge to 0: Ve (t) = Voe /B¢,

Problem #4. An RC circuit with V applied at ¢t = 0 has R =2, C' = 1F. Find
Ve(t).

Vo(t) = V(1 — e WEC) = V(1 — e7/?),

10 Unit 10: Magnetism & Induction

Coverage checklist: Lorentz force (charges/wires); Faraday-Lenz induction; EM spectrum;
Ampere law

10.1 Lorentz Force P!

Concept explanation: A moving charge feels qﬁ and q U X B ; the magnetic force
stays perpendicular to velocity, so it deflects direction without changing speed.
Core formulas:

{ﬁ =q (E + U X é)

Variable definitions: ¢ charge; v particle velocity; E, B fields.
Prerequisites & scope: Nonrelativistic; right-hand rule for cross products.

o Use right-hand rule consistently; reverse direction for negative charges.
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« Magnetic force does no work (always perpendicular to ), so magnetic fields alone
cannot change particle speed.

» Using ¢’s sign incorrectly in q v X B. Fix: compute direction for positive charge,
then flip if ¢ < 0.

Problem #1. A particle of charge ¢ enters a uniform magnetic field B perpendicular to
its velocity with speed v. Find the radius and period of its circular motion (neglect F).

m mu
Magnetic force provides centripetal: quB = — = r = 5 The period is
r q

o 2 2mm
v qB

10.2 Magnetic Force on Wires P!

Core formulas: . L .
F=I1LxB, |F|=ILBsinf.

Variable definitions: I current; L directed along the current segment with magni-
tude L; B magnetic field; 6 angle between L and B.

» For loops, integrate dFF = Idl x B and exploit symmetry.

Problem #2. A wire of length L carries current [ in a uniform field B perpendicular
to the wire. Find the magnitude of magnetic force.

F=1LB.

10.3 Faraday-Lenz P!

Concept explanation: Changing magnetic flux induces an emf that opposes the
change (Lenz); steady currents set magnetic fields constrained by Ampere’s law.
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Core formulas:

g:f Boai= %8 @B://E-M, @E://E-M,
a8 dt S S

(see Ampere/Maxwell-Ampere for magnetic circulation)

Variable definitions: &£ induced emf (scalar, £ = §,s E - di); &5 = [[¢B - dA
magnetic flux; &p = [[g E - dA electric flux; I.,. enclosed current.

Prerequisites & scope: Under Plmemorize the integral form (no derivation).
Generally assume quasi-static fields; for time-varying fields use Maxwell-Ampere
with displacement current.

Terminology note: FElectric circulation refers to the line integral of the electric field
that defines emf, £ = §,4 E - dl. Magnetic circulation refers to § B - dl as used in
Ampere/Maxwell-Ampere. These are distinct: £ is a scalar (emf), while E and B
are fields.

o Sketch the loop and determine the positive normal; apply Lenz’s rule to deduce
the direction of the induced current.

e Apply circular/rectangular Amperian loops along symmetry for infinite wires/-
solenoids.

» Missing displacement current for charging capacitors. Fix: include gy d®g/dt in
Maxwell-Ampere when fields vary.

Problem #3. In a loop of area A, the magnetic field increases as B(t) = By + kt. Find
the induced emf.

d(BA)
dt

o
E=|—|= = kA.
=

10.4 Ampere and Maxwell-Ampere P?

Core formulas:

j{ B-di = tolene (steady currents),

dPp

Maxwell-Ampere (general): ?{ B-dl = tolene + poco o

Page 37 of 43



10.5 EM Spectrum and Maxwell (Concept) P!

Concept explanation: Electromagnetic waves range from radio to gamma;
Maxwell’s equations couple £ and B and give wave speed ¢ in vacuum.
Formulas & Concepts:

1
VHoEo

Spectrum ordering by frequency: radio — microwave — IR — visible,

C =

then UV — X — gamma.

Prerequisites & scope: Vacuum relations shown; material dispersion alters speed
and wavelength.

o Recall typical sources: antennas (radio), thermal (IR), electronic transitions
(visible/UV), inner-shell transitions (X/gamma).

e Use ¢ = f\ with medium refractive index n via v = ¢/n.

Problem #4. Light in vacuum has wavelength A = 600 nm and speed ¢ = 3 x 103 m/s.
Find its frequency.

c 3 x 108

f:f

— _ 14
NG00 x 100 0T

Problem #5. Rank the following by increasing photon energy: radio, visible, X-ray.

Higher frequency means higher photon energy £ = hf. Ordering: radio < visible <
X-ray.

Part I1I: Electricity & Magnetism Practice Pointers
e Physics Bowl DC Circuits Problem 7 Page: 8

o Physics Bowl Electricity & Magnetism Problem 8 Page: 9
o Physics Bowl DC Circuits Problem 9 Page: 10
o Physics Bowl RC Circuits Problem 12 Page: 13

e Physics Bowl DC Circuits Problem 22 Page: 23
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Part IV: Optics & Modern Physics
11 Unit 11: Optics

Coverage checklist: Reflection; refraction (Snell); thin lens and magnification; interference/d-
iffraction

11.1 Reflection and Refraction P?!

Concept explanation: Light reflects with equal incident and reflected angles;
refraction across media obeys Snell’s law.
Core formulas:

ei - 67"7
{nl sinf; = nysinfy, TIR when 6, > 0. = arcsin(ng/n1) (n1 > na).

Variable definitions: n refractive index; 6 angles measured to the normal.
Prerequisites & scope: Geometric optics regime; isotropic media; polarization
effects ignored here.

o Draw the normal and principal rays first; search for total internal reflection when
going to a lower-n medium.

» Use reversibility of light to validate constructions.

Problem #1. Light travels from air (n; = 1) into water (ny = 1.33) at incidence angle
61 = 40°. Find the refraction angle 6s.

sin 40°

P 9, ~ 2890
1.33 2

Snell: nysinf; = nysinfy, = sin by =

Problem #2. Light moves from glass (n = 1.5) to air (n = 1). Find the critical angle
for total internal reflection.

1
0. = arcsin M2 _ arcsin — =~ 41.8°.
nq 1.5
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11.2 Thin Lenses and Sign Conventions P!

Concept explanation: Thin lens imaging follows the lens equation with sign
conventions; magnification uses image and object sizes/orientations.
Core formulas:

=4, m=——=—.
f s & S h
Variable definitions: [ focal length; s object distance; s’ image distance; m
magnification; h’, h image/object heights.
Prerequisites & scope: Use consistent sign convention (e.g., real is positive);
paraxial approximation.

{1 11 s W

o Combine equation + ray diagram: draw two principal rays to confirm the algebraic
image location.

« Remember that negative m indicates inversion; |m| > 1 indicates magnification.

« Sign convention (real-is-positive): take s > 0 for real objects and s’ > 0 for real
images on the opposite side of the lens from the object; s’ < 0 indicates a virtual
image on the object side (then m > 0 and the image is upright).

virtual image ;.

Problem #3. An object at s = 30 cm forms an image at s = —60 cm using a thin lens.
Find the focal length f and magnification m.

Lens equation: % = %+ 5 = % + —%'o = %, so f = 60cm. Magnification: m =

—s'/s = —(—60)/30 = 2. Since f > 0, it is a converging lens. Since s’ < 0, the
image is virtual. Since m > 0, the image is upright.
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11.3 Interference and Diffraction P!

Concept explanation: Coherent sources produce interference patterns; finite
apertures make the light diffract, establishing angular scales by wavelength /aperture.
Core formulas:

{Double—slit maxima: dsinf = m,

Single-slit minima: asinf = mA, m = +1,4+2, ...

Variable definitions: d slit separation; a slit width; A wavelength; 6 diffraction
angle.

Prerequisites & scope: Small-angle approximations sinf ~ # valid near axis;
coherence required for stable fringes.

o Map angles to screen positions with y ~ Ltanf ~ L6 for small 6.

« To resolve features, compare A to a and d to predict fringe spacing/envelope
width.

Problem #4. For double-slit with spacing d and wavelength A, what is the angle of the
m-th bright fringe?

dsinf = m\ = 0 = arcsin(mA/d) (small-angle: 6 ~ m\/d).

12 Unit 12: Modern Physics

Coverage checklist: Special relativity (v, time dilation, length contraction, £ = mc?); photoelec-
tric effect; atomic spectra; nuclear decay/half-life

12.1 Special Relativity P!

Concept explanation: At high speeds, time dilates and lengths contract; en-
ergy—mass equivalence relates rest mass to rest energy.
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Core formulas (with proper vs observed):

1

Ny

Time dilation: At =~y A7 (A7 proper time in moving clock’s frame),

L
Length contraction: L = —2 (Lo proper length measured at rest with the rod),
Y

Relativistic energy: E = ymc® (Ey = mc?®), p=ymv, E?= (pc)*+ (mc®)%

Variable definitions: + Lorentz factor; v relative speed; ¢ speed of light; A7 proper
time (clock’s rest frame); Ly proper length (object’s rest frame); E total energy; Ey
rest energy; p relativistic momentum.

Prerequisites & scope: Inertial frames; v along one axis for simple forms; proper
quantities measured in an object’s rest frame.

« Label frames (S, S’) and identify proper time/length before applying formulas.
D2 Approximation for v < ¢: vy &~ 1+ 3(v/c)? (derivation and series methods belong

to D2).

Problem #1. A spaceship moves at 0.8c relative to Earth. What factor relates proper
time to dilated time?

y=1/V1-08=2.
12.2 Photoelectric Effect P!

Concept explanation: Electrons emit when photon energy exceeds the work
function; the threshold frequency is fy, = ¢/h.
Core formulas:

{Kuax =f =0, fu=0/h,

Variable definitions: h Planck constant; ¢ work function.
Prerequisites & scope: Idealized models; surface effects and detector thresholds
may alter observed K ..

 Stopping potential depends on frequency (threshold via fi, = ¢/h), not intensity.

e In a K. f plot, slope = h, vertical intercept = —¢.
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» Increasing intensity raises saturation current but does not change stopping poten-
tial.

Problem #2. Light of frequency f hits a metal with work function ¢. Write the
maximum kinetic energy of ejected electrons.

Kinax = hf — ¢.

12.3 Nuclear Decay Basics P!

Core formulas: 102
N(t) = Np 27T = Nye™, A = ==
1/2

o For decay chains, use activity A = AN; independent branches superpose exponen-
tials.

e Plot In N vs t to extract A from the slope.

Part IV: Optics & Modern Physics Practice Pointers
o Physics Bowl Geometric Optics Problem 21 Page: 22

e Physics Bowl Geometric Optics Problem 25 Page: 26
o Physics Bowl Modern Physics Problem 32 Page: 31

o Physics Bowl Geometric Optics Problem 34 Page: 32
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